These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 22754334)
1. Isolation and expression of glucosinolate synthesis genes CYP83A1 and CYP83B1 in Pak Choi (Brassica rapa L. ssp. chinensis var. communis (N. Tsen & S.H. Lee) Hanelt). Zhu B; Wang Z; Yang J; Zhu Z; Wang H Int J Mol Sci; 2012; 13(5):5832-5843. PubMed ID: 22754334 [TBL] [Abstract][Full Text] [Related]
2. Glucosinolate Accumulation and Related Gene Expression in Pak Choi (Brassica rapa L. ssp. chinensis var. communis [N. Tsen & S.H. Lee] Hanelt) in Response to Insecticide Application. Zhu B; Yang J; He Y; Zang Y; Zhu Z J Agric Food Chem; 2015 Nov; 63(44):9683-9. PubMed ID: 26485123 [TBL] [Abstract][Full Text] [Related]
3. CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Naur P; Petersen BL; Mikkelsen MD; Bak S; Rasmussen H; Olsen CE; Halkier BA Plant Physiol; 2003 Sep; 133(1):63-72. PubMed ID: 12970475 [TBL] [Abstract][Full Text] [Related]
4. Genotypic variation of the glucosinolate profile in pak choi (Brassica rapa ssp. chinensis). Wiesner M; Zrenner R; Krumbein A; Glatt H; Schreiner M J Agric Food Chem; 2013 Feb; 61(8):1943-53. PubMed ID: 23350944 [TBL] [Abstract][Full Text] [Related]
5. Genomic origin, expression differentiation and regulation of multiple genes encoding CYP83A1, a key enzyme for core glucosinolate biosynthesis, from the allotetraploid Brassica juncea. Meenu ; Augustine R; Majee M; Pradhan AK; Bisht NC Planta; 2015 Mar; 241(3):651-65. PubMed ID: 25410614 [TBL] [Abstract][Full Text] [Related]
6. The involvement of two p450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Bak S; Feyereisen R Plant Physiol; 2001 Sep; 127(1):108-18. PubMed ID: 11553739 [TBL] [Abstract][Full Text] [Related]
7. Differential expression of major genes involved in the biosynthesis of aliphatic glucosinolates in intergeneric Baemoochae (Brassicaceae) and its parents during development. Nugroho ABD; Han N; Pervitasari AN; Kim DH; Kim J Plant Mol Biol; 2020 Jan; 102(1-2):171-184. PubMed ID: 31792713 [TBL] [Abstract][Full Text] [Related]
9. [Isolation and characterization of BcMF3, a gene expressed only in maintainer line in Chinese cabbage-pak-choi (Brassica campestris L. ssp. chinensis Makino var. communis Tsen et lee)]. Wang YQ; Yu XL; Cao JS Yi Chuan Xue Bao; 2004 Nov; 31(11):1302-8. PubMed ID: 15651684 [TBL] [Abstract][Full Text] [Related]
10. Induced production of 1-methoxy-indol-3-ylmethyl glucosinolate by jasmonic acid and methyl jasmonate in sprouts and leaves of pak choi (Brassica rapa ssp. chinensis). Wiesner M; Hanschen FS; Schreiner M; Glatt H; Zrenner R Int J Mol Sci; 2013 Jul; 14(7):14996-5016. PubMed ID: 23873294 [TBL] [Abstract][Full Text] [Related]
11. Cloning of genes related to aliphatic glucosinolate metabolism and the mechanism of sulforaphane accumulation in broccoli sprouts under jasmonic acid treatment. Guo L; Yang R; Gu Z J Sci Food Agric; 2016 Oct; 96(13):4329-36. PubMed ID: 26786856 [TBL] [Abstract][Full Text] [Related]
12. Four genes encoding MYB28, a major transcriptional regulator of the aliphatic glucosinolate pathway, are differentially expressed in the allopolyploid Brassica juncea. Augustine R; Majee M; Gershenzon J; Bisht NC J Exp Bot; 2013 Nov; 64(16):4907-21. PubMed ID: 24043856 [TBL] [Abstract][Full Text] [Related]
13. Functional identification of genes responsible for the biosynthesis of 1-methoxy-indol-3-ylmethyl-glucosinolate in Brassica rapa ssp. chinensis. Wiesner M; Schreiner M; Zrenner R BMC Plant Biol; 2014 May; 14():124. PubMed ID: 24886080 [TBL] [Abstract][Full Text] [Related]
14. Identification and expression pattern analysis of BoMYB51 involved in indolic glucosinolate biosynthesis from broccoli (Brassica oleracea var. italica). Yu Q; Hao G; Zhou J; Wang J; Evivie ER; Li J Biochem Biophys Res Commun; 2018 Jun; 501(2):598-604. PubMed ID: 29753738 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering of aliphatic glucosinolates in Chinese cabbage plants expressing Arabidopsis MAM1, CYP79F1, and CYP83A1. Zang YX; Kim JH; Park YD; Kim DH; Hong SB BMB Rep; 2008 Jun; 41(6):472-8. PubMed ID: 18593532 [TBL] [Abstract][Full Text] [Related]
16. Integrated Analysis of Transcriptomic and Metabolomic Data Reveals the Mechanism by Which LED Light Irradiation Extends the Postharvest Quality of Pak-choi ( Yan Z; Zuo J; Zhou F; Shi J; Xu D; Hu W; Jiang A; Liu Y; Wang Q Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32046153 [TBL] [Abstract][Full Text] [Related]
17. Novel bioresources for studies of Brassica oleracea: identification of a kale MYB transcription factor responsible for glucosinolate production. Araki R; Hasumi A; Nishizawa OI; Sasaki K; Kuwahara A; Sawada Y; Totoki Y; Toyoda A; Sakaki Y; Li Y; Saito K; Ogawa T; Hirai MY Plant Biotechnol J; 2013 Oct; 11(8):1017-27. PubMed ID: 23910994 [TBL] [Abstract][Full Text] [Related]
18. Expression Profiling of Glucosinolate Biosynthetic Genes in Brassica oleracea L. var. capitata Inbred Lines Reveals Their Association with Glucosinolate Content. Robin AH; Yi GE; Laila R; Yang K; Park JI; Kim HR; Nou IS Molecules; 2016 Jun; 21(6):. PubMed ID: 27322230 [TBL] [Abstract][Full Text] [Related]
19. Identification and characterization of the gene BraANS.A03 associated with purple leaf color in pak choi (Brassica rapa L. ssp. chinensis). Tan C; Chen H; Dai G; Liu Y; Shen W; Wang C; Liu D; Liu S; Xu S; Zhu B; Chen D; Cui C Planta; 2023 Jun; 258(1):19. PubMed ID: 37314587 [TBL] [Abstract][Full Text] [Related]
20. Increased Glucosinolate Production in Brassica oleracea var. italica Cell Cultures Due to Coronatine Activated Genes Involved in Glucosinolate Biosynthesis. Sánchez-Pujante PJ; Sabater-Jara AB; Belchí-Navarro S; Pedreño MA; Almagro L J Agric Food Chem; 2019 Jan; 67(1):102-111. PubMed ID: 30566344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]