These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22754496)

  • 1. Decoding Finger Flexion from Band-Specific ECoG Signals in Humans.
    Liang N; Bougrain L
    Front Neurosci; 2012; 6():91. PubMed ID: 22754496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prior knowledge improves decoding of finger flexion from electrocorticographic signals.
    Wang Z; Ji Q; Miller KJ; Schalk G
    Front Neurosci; 2011; 5():127. PubMed ID: 22144944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and accurate decoding of finger movements from ECoG through Riemannian features and modern machine learning techniques.
    Yao L; Zhu B; Shoaran M
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 35078156
    [No Abstract]   [Full Text] [Related]  

  • 4. Decoding Finger Movements from ECoG Signals Using Switching Linear Models.
    Flamary R; Rakotomamonjy A
    Front Neurosci; 2012; 6():29. PubMed ID: 22408601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards predicting ECoG-BCI performance: assessing the potential of scalp-EEG
    Fahimi Hnazaee M; Verwoert M; Freudenburg ZV; van der Salm SMA; Aarnoutse EJ; Leinders S; Van Hulle MM; Ramsey NF; Vansteensel MJ
    J Neural Eng; 2022 Aug; 19(4):. PubMed ID: 35931055
    [No Abstract]   [Full Text] [Related]  

  • 7. Comparison of decoding resolution of standard and high-density electrocorticogram electrodes.
    Wang PT; King CE; McCrimmon CM; Lin JJ; Sazgar M; Hsu FP; Shaw SJ; Millet DE; Chui LA; Liu CY; Do AH; Nenadic Z
    J Neural Eng; 2016 Apr; 13(2):026016. PubMed ID: 26859341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Logistic-weighted regression improves decoding of finger flexion from electrocorticographic signals.
    Chen W; Liu X; Litt B
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2629-32. PubMed ID: 25570530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ECoG Beta Suppression and Modulation During Finger Extension and Flexion.
    Unterweger J; Seeber M; Zanos S; Ojemann JG; Scherer R
    Front Neurosci; 2020; 14():35. PubMed ID: 32116497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial co-adaptation of cortical control columns in a micro-ECoG brain-computer interface.
    Rouse AG; Williams JJ; Wheeler JJ; Moran DW
    J Neural Eng; 2016 Oct; 13(5):056018. PubMed ID: 27651034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding Movement From Electrocorticographic Activity: A Review.
    Volkova K; Lebedev MA; Kaplan A; Ossadtchi A
    Front Neuroinform; 2019; 13():74. PubMed ID: 31849632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finger movements are mainly represented by a linear transformation of energy in band-specific ECoG signals.
    Marjaninejad A; Taherian B; Valero-Cuevas FJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():986-989. PubMed ID: 29060039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the Influence of ECoG Grid Spatial Density on Decoding Hand Flexion and Extension.
    Jiang T; Jiang T; Wang T; Mei S; Liu Q; Li Y; Wang X; Prabhu S; Sha Z; Ince NF
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3052-3055. PubMed ID: 30441039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The current state of electrocorticography-based brain-computer interfaces.
    Miller KJ; Hermes D; Staff NP
    Neurosurg Focus; 2020 Jul; 49(1):E2. PubMed ID: 32610290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoding flexion of individual fingers using electrocorticographic signals in humans.
    Kubánek J; Miller KJ; Ojemann JG; Wolpaw JR; Schalk G
    J Neural Eng; 2009 Dec; 6(6):066001. PubMed ID: 19794237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding of Hand Gestures from Electrocorticography with LSTM Based Deep Neural Network.
    Pradeepkumar J; Anandakumar M; Kugathasan V; Lalitharatne TD; De Silva AC; Kappel SL
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():420-423. PubMed ID: 34891323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding Neural Activity in Sulcal and White Matter Areas of the Brain to Accurately Predict Individual Finger Movement and Tactile Stimuli of the Human Hand.
    Bouton C; Bhagat N; Chandrasekaran S; Herrero J; Markowitz N; Espinal E; Kim JW; Ramdeo R; Xu J; Glasser MF; Bickel S; Mehta A
    Front Neurosci; 2021; 15():699631. PubMed ID: 34483823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoding three-dimensional reaching movements using electrocorticographic signals in humans.
    Bundy DT; Pahwa M; Szrama N; Leuthardt EC
    J Neural Eng; 2016 Apr; 13(2):026021. PubMed ID: 26902372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoding fingertip trajectory from electrocorticographic signals in humans.
    Nakanishi Y; Yanagisawa T; Shin D; Chen C; Kambara H; Yoshimura N; Fukuma R; Kishima H; Hirata M; Koike Y
    Neurosci Res; 2014 Aug; 85():20-7. PubMed ID: 24880133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous Decoding of Hand Movement From EEG Signals Using Phase-Based Connectivity Features.
    Hosseini SM; Shalchyan V
    Front Hum Neurosci; 2022; 16():901285. PubMed ID: 35845243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.