These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 22755022)

  • 1. Solvothermal synthesis of 3D BiOCl microstructures and their electrochemical hydrogen storage behavior.
    Li J; Zhu Y; Yan Y; Xi B; Tang K; Qian Y
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2068-75. PubMed ID: 22755022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MnCO3 microstructures assembled with nanoparticles: shape-controlled synthesis and their application for Li-ion batteries.
    Yan Y; Zhu Y; Yu Y; Li J; Mei T; Ju Z; Qian Y
    J Nanosci Nanotechnol; 2012 Sep; 12(9):7334-8. PubMed ID: 23035473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Necklace-like hollow carbon nanospheres from the pentagon-including reactants: synthesis and electrochemical properties.
    Wu C; Zhu X; Ye L; Ouyang C; Hu S; Lei L; Xie Y
    Inorg Chem; 2006 Oct; 45(21):8543-50. PubMed ID: 17029365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrothermal Synthesis of Spinel-Perovskite Li-Mn-Fe-Si Nanocomposites for Electrochemical Hydrogen Storage.
    Monsef R; Salavati-Niasari M; Masjedi-Arani M
    Inorg Chem; 2022 May; 61(18):6750-6763. PubMed ID: 35465668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controllable Pulse Reverse Electrodeposition of Mesoporous Li
    Behboudi-Khiavi S; Javanbakht M; Mozaffari SA; Ghaemi M
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21552-21566. PubMed ID: 31124651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mg1.8La0.2Ni-xNi nanocomposites for electrochemical hydrogen storage.
    Yang H; Zhang H; Mo W; Zhou Z
    J Phys Chem B; 2006 Dec; 110(51):25769-74. PubMed ID: 17181219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave-solvothermal synthesis of various polymorphs of nanostructured TiO2 in different alcohol media and their lithium ion storage properties.
    Yoon S; Lee ES; Manthiram A
    Inorg Chem; 2012 Mar; 51(6):3505-12. PubMed ID: 22380796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural characterization and electrochemical properties of Co3O4 anode materials synthesized by a hydrothermal method.
    Shin C; Manuel J; Kim DS; Ryu HS; Ahn HJ; Ahn JH
    Nanoscale Res Lett; 2012 Jan; 7(1):73. PubMed ID: 22230236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced hydrogen storage capacity of nanosized copper loaded active carbons treated under CO2.
    Hu J; Gao Q; Wang H
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7648-53. PubMed ID: 21138002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation, microstructure and hydrogen sorption properties of nanoporous carbon aerogels under ambient drying.
    Tian HY; Buckley CE; Mulè S; Paskevicius M; Dhal BB
    Nanotechnology; 2008 Nov; 19(47):475605. PubMed ID: 21836280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High electrochemical performance of monodisperse NiCo₂O₂ mesoporous microspheres as an anode material for Li-ion batteries.
    Li J; Xiong S; Liu Y; Ju Z; Qian Y
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):981-8. PubMed ID: 23323836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors.
    Ghodbane O; Pascal JL; Favier F
    ACS Appl Mater Interfaces; 2009 May; 1(5):1130-9. PubMed ID: 20355901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical Performance and Hydrogen Storage of Ni-Pd-P-B Glassy Alloy.
    Alshahrie A; Arkook B; Al-Ghamdi W; Eldera S; Alzaidi T; Bamashmus H; Shalaan E
    Nanomaterials (Basel); 2022 Dec; 12(23):. PubMed ID: 36500933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical ball-milling preparation of fullerene/cobalt core/shell nanocomposites with high electrochemical hydrogen storage ability.
    Bao D; Gao P; Shen X; Chang C; Wang L; Wang Y; Chen Y; Zhou X; Sun S; Li G; Yang P
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2902-9. PubMed ID: 24498904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous SnO2-Fe2O3 nanocubes with improved electrochemical performance for lithium ion batteries.
    Yan Y; Du F; Shen X; Ji Z; Zhou H; Zhu G
    Dalton Trans; 2014 Dec; 43(46):17544-50. PubMed ID: 25347762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile synthesis of 3D hierarchical foldaway-lantern-like LiMnPO4 by nanoplate self-assembly, and electrochemical performance for Li-ion batteries.
    Chen D; Wei W; Wang R; Lang XF; Tian Y; Guo L
    Dalton Trans; 2012 Aug; 41(29):8822-8. PubMed ID: 22692085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid Self-Assembly Spherical Li1.2Mn0.56Ni0.16Co0.08O2 with Improved Performances by Microwave Hydrothermal Method as Cathode for Lithium-Ion Batteries.
    Shi S; Wang T; Cao M; Wang J; Zhao M; Yang G
    ACS Appl Mater Interfaces; 2016 May; 8(18):11476-87. PubMed ID: 27098184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium storage properties of pristine and (Mg, Cu) codoped ZnFe2O4 nanoparticles.
    Hameed AS; Bahiraei H; Reddy MV; Shoushtari MZ; Vittal JJ; Ong CK; Chowdari BV
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10744-53. PubMed ID: 24912014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cationically Substituted Bi
    Myung Y; Choi J; Wu F; Banerjee S; Majzoub EH; Jin J; Son SU; Braun PV; Banerjee P
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14187-14196. PubMed ID: 28388093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Study of Electrochemical Performance of SnO2 Anodes with Different Nanostructures for Lithium-Ion Batteries.
    Sun YH; Dong PP; Lang X; Chen HY; Nan JM
    J Nanosci Nanotechnol; 2015 Aug; 15(8):5880-8. PubMed ID: 26369165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.