BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22755046)

  • 1. Synthesis, characterization and superparamagnetic resonance studies of ZnFe2O4 nanoparticles.
    Köseoğlu Y; Yildiz H; Yilgin R
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2261-9. PubMed ID: 22755046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size and surface effects on magnetic properties of Fe3O4 nanoparticles.
    Köseoglu Y; Kavas H
    J Nanosci Nanotechnol; 2008 Feb; 8(2):584-90. PubMed ID: 18464374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ZnFe2O4 nanoparticles dispersed in a highly porous silica aerogel matrix: a magnetic study.
    Bullita S; Casu A; Casula MF; Concas G; Congiu F; Corrias A; Falqui A; Loche D; Marras C
    Phys Chem Chem Phys; 2014 Mar; 16(10):4843-52. PubMed ID: 24469688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exchange-bias and magnetic anisotropy fields in core-shell ferrite nanoparticles.
    Silva FG; Depeyrot J; Raikher YL; Stepanov VI; Poperechny IS; Aquino R; Ballon G; Geshev J; Dubois E; Perzynski R
    Sci Rep; 2021 Mar; 11(1):5474. PubMed ID: 33750828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model Driven Optimization of Magnetic Anisotropy of Exchange-coupled Core-Shell Ferrite Nanoparticles for Maximal Hysteretic Loss.
    Zhang Q; Castellanos-Rubio I; Munshi R; Orue I; Pelaz B; Gries KI; Parak WJ; Del Pino P; Pralle A
    Chem Mater; 2015 Nov; 27(21):7380-7387. PubMed ID: 31105383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature dependence of electron magnetic resonance spectra of iron oxide nanoparticles mineralized in Listeria innocua protein cages.
    Usselman RJ; Russek SE; Klem MT; Allen MA; Douglas T; Young M; Idzerda YU; Singel DJ
    J Appl Phys; 2012 Oct; 112(8):84701. PubMed ID: 23152643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Surfaces in the Magnetic and Ozone Gas-Sensing Properties of ZnFe
    Cristina de Oliveira R; Pontes Ribeiro RA; Cruvinel GH; Ciola Amoresi RA; Carvalho MH; Aparecido de Oliveira AJ; Carvalho de Oliveira M; Ricardo de Lazaro S; Fernando da Silva L; Catto AC; Simões AZ; Sambrano JR; Longo E
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4605-4617. PubMed ID: 33443996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface spin-glass freezing in interacting core-shell NiO nanoparticles.
    Winkler E; Zysler RD; Vasquez Mansilla M; Fiorani D; Rinaldi D; Vasilakaki M; Trohidou KN
    Nanotechnology; 2008 May; 19(18):185702. PubMed ID: 21825698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated study of thermal treatment effects on the microstructure and magnetic properties of Zn-ferrite nanoparticles.
    Antic B; Perovic M; Kremenovic A; Blanusa J; Spasojevic V; Vulic P; Bessais L; Bozin ES
    J Phys Condens Matter; 2013 Feb; 25(8):086001. PubMed ID: 23343510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles.
    El-Naggar ME; Shaheen TI; Fouda MM; Hebeish AA
    Carbohydr Polym; 2016 Jan; 136():1128-36. PubMed ID: 26572455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superparamagnetic nanocrystalline ZnFe2O4 with a very high Curie temperature.
    Deka S; Joy PA
    J Nanosci Nanotechnol; 2008 Aug; 8(8):3955-8. PubMed ID: 19049157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave Combustion Synthesis and Characterization Studies of Magnetic Zn(1-x)Cd(x)Fe2O4 (0 ≤ x ≤ 0.5) Nanoparticles.
    Valan MF; Manikandan A; Antony SA
    J Nanosci Nanotechnol; 2015 Jun; 15(6):4543-51. PubMed ID: 26369078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of superparamagnetic bare Fe₃O₄ nanostructures and core/shell (Fe₃O₄/alginate) nanocomposites.
    Srivastava M; Singh J; Yashpal M; Gupta DK; Mishra RK; Tripathi S; Ojha AK
    Carbohydr Polym; 2012 Jul; 89(3):821-9. PubMed ID: 24750867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave spin resonance investigation on the effect of the post-processing annealing of CoFe
    Kumar P; Pathak S; Singh A; Khanduri H; Basheed GA; Wang L; Pant RP
    Nanoscale Adv; 2020 May; 2(5):1939-1948. PubMed ID: 36132523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic properties of annealed core-shell CoPt nanoparticles.
    Bigot JY; Kesserwan H; Halté V; Ersen O; Moldovan MS; Kim TH; Jang JT; Cheon J
    Nano Lett; 2012 Mar; 12(3):1189-97. PubMed ID: 22329461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of ZnFe
    Hoque SM; Hossain MS; Choudhury S; Akhter S; Hyder F
    Mater Lett; 2016 Feb; 162():60-63. PubMed ID: 26549918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of ZnFe2O4 nanoparticles with tunable magnetic and sensing properties.
    Guo P; Cui L; Wang Y; Lv M; Wang B; Zhao XS
    Langmuir; 2013 Jul; 29(28):8997-9003. PubMed ID: 23786379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-assisted synthesis of superparamagnetic Fe@Au core-shell nanoparticles.
    Zhang J; Post M; Veres T; Jakubek ZJ; Guan J; Wang D; Normandin F; Deslandes Y; Simard B
    J Phys Chem B; 2006 Apr; 110(14):7122-8. PubMed ID: 16599475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape anisotropy and exchange bias in magnetic flattened nanospindles with metallic/oxide core/shell structures.
    Mendoza-Reséndez R; Luna C
    J Nanosci Nanotechnol; 2012 Sep; 12(9):7577-81. PubMed ID: 23035520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of Magnetic Anisotropy of Individual Magnetite Nanoparticles for Magnetic Hyperthermia.
    Mamiya H; Fukumoto H; Cuya Huaman JL; Suzuki K; Miyamura H; Balachandran J
    ACS Nano; 2020 Jul; 14(7):8421-8432. PubMed ID: 32574042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.