These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 22755069)

  • 1. Optimized CVD production of CNT-based nanohybrids by Taguchi robust design.
    Santangelo S; Lanza M; Piperopoulos E; Milone C
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2424-36. PubMed ID: 22755069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaling laws for multi-walled carbon nanotube growth by catalyzed chemical vapor deposition.
    Santangelo S; Milone C; Lanza M; Pistone A; Messina G; Faggio G
    J Nanosci Nanotechnol; 2010 Feb; 10(2):1286-95. PubMed ID: 20352790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of parameters by Taguchi method for controlling purity of carbon nanotubes in chemical vapour deposition technique.
    Dasgupta K; Sen D; Mazumder S; Basak CB; Joshi JB; Banerjee S
    J Nanosci Nanotechnol; 2010 Jun; 10(6):4030-7. PubMed ID: 20355409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth and analysis of C nanotubes on ceramic polymer-additives.
    Santangelo S; Piperopoulos E; Lanza M; Milone C
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4786-97. PubMed ID: 22905531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials.
    Dillon AC; Yudasaka M; Dresselhaus MS
    J Nanosci Nanotechnol; 2004 Sep; 4(7):691-703. PubMed ID: 15570946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalyst poisoning by amorphous carbon during carbon nanotube growth: fact or fiction?
    Schünemann C; Schäffel F; Bachmatiuk A; Queitsch U; Sparing M; Rellinghaus B; Lafdi K; Schultz L; Büchner B; Rümmeli MH
    ACS Nano; 2011 Nov; 5(11):8928-34. PubMed ID: 22023292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of multiwalled carbon nanotubes on fly ash derived catalysts.
    Dunens OM; MacKenzie KJ; Harris AT
    Environ Sci Technol; 2009 Oct; 43(20):7889-94. PubMed ID: 19921910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dendrimer-templated Fe nanoparticles for the growth of single-wall carbon nanotubes by plasma-enhanced CVD.
    Amama PB; Maschmann MR; Fisher TS; Sands TD
    J Phys Chem B; 2006 Jun; 110(22):10636-44. PubMed ID: 16771309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green approach to synthesize multi-walled carbon nanotubes by using metal formate as catalyst precursors.
    Rajarao R; Bhat BR
    J Nanosci Nanotechnol; 2013 Mar; 13(3):2153-8. PubMed ID: 23755659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of silica-alumina support ratio on H
    Zhang Y; Tao Y; Huang J; Williams P
    Waste Manag Res; 2017 Oct; 35(10):1045-1054. PubMed ID: 28789599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of Synthesis Conditions of Carbon Nanotubes via Ultrasonic-Assisted Floating Catalyst Deposition Using Response Surface Methodology.
    Mohammadian N; Ghoreishi SM; Hafeziyeh S; Saeidi S; Dionysiou DD
    Nanomaterials (Basel); 2018 May; 8(5):. PubMed ID: 29747451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of carbon source and Fe-catalyst support on the growth of multi-walled carbon nanotubes.
    Donato MG; Galvagno S; Lanza M; Messina G; Milone C; Piperopoulos E; Pistone A; Santangelo S
    J Nanosci Nanotechnol; 2009 Jun; 9(6):3815-23. PubMed ID: 19504925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ synthesis of carbon nanotubes on heated scanning probes using dip pen techniques.
    Gargate RV; Banerjee D
    Scanning; 2008; 30(2):151-8. PubMed ID: 18241043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth of carbon nanostructures using a Pd-based catalyst.
    Segura RA; Hevia S; Häberle P
    J Nanosci Nanotechnol; 2011 Nov; 11(11):10036-46. PubMed ID: 22413342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of the Taguchi analytical method for optimization of effective parameters of the chemical vapor deposition process controlling the production of nanotubes/nanobeads.
    Sharon M; Apte PR; Purandare SC; Zacharia R
    J Nanosci Nanotechnol; 2005 Feb; 5(2):288-95. PubMed ID: 15853150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron-doped carbon aerogels: novel porous substrates for direct growth of carbon nanotubes.
    Steiner SA; Baumann TF; Kong J; Satcher JH; Dresselhaus MS
    Langmuir; 2007 Apr; 23(9):5161-6. PubMed ID: 17381146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards the large-scale synthesis of carbon nanotubes in fluidised beds.
    Harris AT; See CH; Liu J; Dunens O; MacKenzie K
    J Nanosci Nanotechnol; 2008 May; 8(5):2450-7. PubMed ID: 18572662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of Mass Flow in the Synthesis of Ferromagnetic Carbon Nanotubes in Chemical Vapor Deposition System.
    Raniszewski G; Pietrzak Ł
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33525748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes.
    Steiner SA; Baumann TF; Bayer BC; Blume R; Worsley MA; MoberlyChan WJ; Shaw EL; Schlögl R; Hart AJ; Hofmann S; Wardle BL
    J Am Chem Soc; 2009 Sep; 131(34):12144-54. PubMed ID: 19663436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of single-walled carbon nanotubes from alcohol and generation mechanism by molecular dynamics simulations.
    Maruyama S; Murakami Y; Shibuta Y; Miyauchi Y; Chiashi S
    J Nanosci Nanotechnol; 2004 Apr; 4(4):360-7. PubMed ID: 15296225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.