These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22755095)

  • 1. Studies on copper-yttria nanocomposites: high-energy ball milling versus chemical reduction method.
    Joshi PB; Rehani B; Naik P; Patel S; Khanna PK
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2591-7. PubMed ID: 22755095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Cu-W nanocomposite by high-energy ball milling.
    Venugopal T; Rao KP; Murty BS
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2376-81. PubMed ID: 17663255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Milling Time on the Microstructure, Physical and Mechanical Properties of Al-Al₂O₃ Nanocomposite Synthesized by Ball Milling and Powder Metallurgy.
    Toozandehjani M; Matori KA; Ostovan F; Abdul Aziz S; Mamat MS
    Materials (Basel); 2017 Oct; 10(11):. PubMed ID: 29072632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructural Characterization of Aluminum-Carbon Nanotube Nanocomposites Produced Using Different Dispersion Methods.
    Simões S; Viana F; Reis MA; Vieira MF
    Microsc Microanal; 2016 Jun; 22(3):725-32. PubMed ID: 26954879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of Cu-xFe
    Predescu AM; Vidu R; Vizureanu P; Predescu A; Matei E; Predescu C
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32664281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superior Mechanical Performance of Inductively Sintered Al/SiC Nanocomposites Processed by Novel Milling Route.
    Almotairy SM; Alharthi NH; Alharbi HF; Abdo HS
    Sci Rep; 2020 Jun; 10(1):10368. PubMed ID: 32587361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersion and precipitation strengthened nanocrystalline and ultra fine grained copper.
    Stobrawa JP; Rdzawski ZM; Głuchowski WJ
    J Nanosci Nanotechnol; 2012 Dec; 12(12):9102-11. PubMed ID: 23447963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and Strength of Iron-Copper-Carbon Nanotube Nanocomposites.
    Boshko O; Dashevskyi M; Mykhaliuk O; Ivanenko K; Hamamda S; Revo S
    Nanoscale Res Lett; 2016 Dec; 11(1):78. PubMed ID: 26858160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformations in oxides induced by high-energy ball-milling.
    Šepelák V; Bégin-Colin S; Le Caër G
    Dalton Trans; 2012 Oct; 41(39):11927-48. PubMed ID: 22875201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructures and Properties of Cu-rGO Composites Prepared by Microwave Sintering.
    Chen X; Zhao L; Jiang L; Wang H
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of Cu-based nanocomposites produced by mechanically-activated self-propagating high-temperature synthesis and spark-plasma sintering.
    Kim JS; Dudina DV; Kim JC; Kwon YS; Park JJ; Rhee CK
    J Nanosci Nanotechnol; 2010 Jan; 10(1):252-7. PubMed ID: 20352842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructural changes in copper-graphite-alumina nanocomposites produced by mechanical alloying.
    Rodrigues I; Guedes M; Ferro AC
    Microsc Microanal; 2015 Feb; 21(1):120-31. PubMed ID: 25339234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure, Mechanical and Electrical Properties of Hybrid Copper Matrix Composites with Fe Microspheres and rGO Nanosheets.
    Zhang X; He M; Zhan Y; Yang W; Wu K
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical and electrical properties of carbon nanotube/Cu nanocomposites by molecular-level mixing and controlled oxidation process.
    Lim BK; Mo CB; Nam DH; Hong SH
    J Nanosci Nanotechnol; 2010 Jan; 10(1):78-84. PubMed ID: 20352814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-property relationships of iron-hydroxyapatite ceramic matrix nanocomposite fabricated using mechanosynthesis method.
    Nordin JA; Prajitno DH; Saidin S; Nur H; Hermawan H
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():294-9. PubMed ID: 25842138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and Workability Behavior of Cu-X wt.% TiC (
    Mohanavel V; Ravichandran M; Ashraff Ali KS; Sathish T; Karthick A; Arungalai Vendan S; Velmurugan P; Salmen SH; Alfarraj S; Sivakumar S; Gebrekidan AM
    Bioinorg Chem Appl; 2022; 2022():8101680. PubMed ID: 35637640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of Electrical Conductivity of Aluminum-Based Nanocomposite Produced by Spark Plasma Sintering.
    Ulloa-Castillo NA; Hernández-Maya R; Islas-Urbano J; Martínez-Romero O; Segura-Cárdenas E; Elías-Zúñiga A
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33925115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the Influence of Starting Materials and Processing Conditions on the Properties of W/Cu Alloys.
    Montealegre-Meléndez I; Arévalo C; Perez-Soriano EM; Neubauer E; Rubio-Escudero C; Kitzmantel M
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical and Electrical Properties of Graphene Oxide Reinforced Copper-Tungsten Composites Produced via Ball Milling of Metal Flakes.
    Lin F; Xu R; Zhou M; Young RJ; Kinloch IA; Ding Y
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser additive manufacturing bulk graphene-copper nanocomposites.
    Hu Z; Chen F; Lin D; Nian Q; Parandoush P; Zhu X; Shao Z; Cheng GJ
    Nanotechnology; 2017 Nov; 28(44):445705. PubMed ID: 28854158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.