These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 2275528)

  • 41. Hydrophobicity of abiotic surfaces governs droplets deposition and evaporation patterns.
    Richard E; Dubois T; Allion-Maurer A; Jha PK; Faille C
    Food Microbiol; 2020 Oct; 91():103538. PubMed ID: 32539949
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The differential effects of heat-shocking on the viability of spores from Bacillus anthracis, Bacillus subtilis, and Clostridium sporogenes after treatment with peracetic acid- and glutaraldehyde-based disinfectants.
    March JK; Pratt MD; Lowe CW; Cohen MN; Satterfield BA; Schaalje B; O'Neill KL; Robison RA
    Microbiologyopen; 2015 Oct; 4(5):764-73. PubMed ID: 26185111
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The adhesion of Bacillus cereus spores to epithelial cells might be an additional virulence mechanism.
    Andersson A; Granum PE; Rönner U
    Int J Food Microbiol; 1998 Jan; 39(1-2):93-9. PubMed ID: 9562881
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of the hydrophobic properties of latex microspheres and Bacillus spores. Influence of the particle size on the data obtained by the MATH method (microbial adhesion to hydrocarbons).
    Faille C; Lemy C; Allion-Maurer A; Zoueshtiagh F
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110398. PubMed ID: 31376688
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bacillus and other spore-forming genera: variations in responses and mechanisms for survival.
    Checinska A; Paszczynski A; Burbank M
    Annu Rev Food Sci Technol; 2015; 6():351-69. PubMed ID: 25705935
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bacterial spore structures and their protective role in biocide resistance.
    Leggett MJ; McDonnell G; Denyer SP; Setlow P; Maillard JY
    J Appl Microbiol; 2012 Sep; 113(3):485-98. PubMed ID: 22574673
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Expansion of the Spore Surface Polysaccharide Layer in Bacillus subtilis by Deletion of Genes Encoding Glycosyltransferases and Glucose Modification Enzymes.
    Shuster B; Khemmani M; Nakaya Y; Holland G; Iwamoto K; Abe K; Imamura D; Maryn N; Driks A; Sato T; Eichenberger P
    J Bacteriol; 2019 Oct; 201(19):. PubMed ID: 31235516
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Updates on the sporulation process in Clostridium species.
    Talukdar PK; Olguín-Araneda V; Alnoman M; Paredes-Sabja D; Sarker MR
    Res Microbiol; 2015 May; 166(4):225-35. PubMed ID: 25541348
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adhesion of B. subtilis spores and vegetative cells onto stainless steel--DLVO theories and AFM spectroscopy.
    Harimawan A; Zhong S; Lim CT; Ting YP
    J Colloid Interface Sci; 2013 Sep; 405():233-41. PubMed ID: 23777862
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanisms for the prevention of damage to DNA in spores of Bacillus species.
    Setlow P
    Annu Rev Microbiol; 1995; 49():29-54. PubMed ID: 8561462
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Germinability and heat resistance of spores of Clostridium difficile strains.
    Nakamura S; Yamakawa K; Izumi J; Nakashio S; Nishida S
    Microbiol Immunol; 1985; 29(2):113-8. PubMed ID: 4010539
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Germination-initiated spores of Bacillus brevis Nagano retain their resistance properties.
    Daher E; Rosenberg E; Demain AL
    J Bacteriol; 1985 Jan; 161(1):47-50. PubMed ID: 2578449
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pressure inactivation of Bacillus endospores.
    Margosch D; Gänzle MG; Ehrmann MA; Vogel RF
    Appl Environ Microbiol; 2004 Dec; 70(12):7321-8. PubMed ID: 15574932
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Novel strains of Moorella thermoacetica form unusually heat-resistant spores.
    Byrer DE; Rainey FA; Wiegel J
    Arch Microbiol; 2000 Nov; 174(5):334-9. PubMed ID: 11131023
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Heat injury of bacterial spores.
    Adams DM
    Adv Appl Microbiol; 1978; 23():245-61. PubMed ID: 356541
    [No Abstract]   [Full Text] [Related]  

  • 56. Determination of spore inactivation during thermal and pressure-assisted thermal processing using FT-IR spectroscopy.
    Subramanian A; Ahn J; Balasubramaniam VM; Rodriguez-Saona L
    J Agric Food Chem; 2006 Dec; 54(26):10300-6. PubMed ID: 17177574
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of thermal treatments in oils on bacterial spore survival.
    Ababouch L; Busta FF
    J Appl Bacteriol; 1987 Jun; 62(6):491-502. PubMed ID: 3114210
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inactivation of Bacillus spores in reconstituted skim milk by combined high pressure and heat treatment.
    Scurrah KJ; Robertson RE; Craven HM; Pearce LE; Szabo EA
    J Appl Microbiol; 2006 Jul; 101(1):172-80. PubMed ID: 16834604
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Diversity of spore-forming bacteria in cattle manure, slaughterhouse waste and samples from biogas plants.
    Bagge E; Persson M; Johansson KE
    J Appl Microbiol; 2010 Nov; 109(5):1549-65. PubMed ID: 20629803
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Clostridial spore germination versus bacilli: genome mining and current insights.
    Xiao Y; Francke C; Abee T; Wells-Bennik MH
    Food Microbiol; 2011 Apr; 28(2):266-74. PubMed ID: 21315983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.