These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 2275528)

  • 61. Recent advances in the understanding of resistance and dormancy in bacterial spores.
    Gould GW
    J Appl Bacteriol; 1977 Jun; 42(3):297-309. PubMed ID: 18433
    [No Abstract]   [Full Text] [Related]  

  • 62. A method for the determination of bacterial spore DNA content based on isotopic labelling, spore germination and diphenylamine assay; ploidy of spores of several Bacillus species.
    Hauser PM; Karamata D
    Biochimie; 1992; 74(7-8):723-33. PubMed ID: 1391052
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The effect of chlorine on spores of Clostridium bifermentans, Bacillus subtilis and Bacillus cereus.
    Wyatt LR; Waites WM
    J Gen Microbiol; 1975 Aug; 89(2):337-44. PubMed ID: 809541
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Role of mechanical vs. chemical action in the removal of adherent Bacillus spores during CIP procedures.
    Faille C; Bénézech T; Blel W; Ronse A; Ronse G; Clarisse M; Slomianny C
    Food Microbiol; 2013 Apr; 33(2):149-57. PubMed ID: 23200646
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Characterization of the Dynamic Germination of Individual Clostridium difficile Spores Using Raman Spectroscopy and Differential Interference Contrast Microscopy.
    Wang S; Shen A; Setlow P; Li YQ
    J Bacteriol; 2015 Jul; 197(14):2361-73. PubMed ID: 25939833
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Adherence of Clostridium difficile spores to Caco-2 cells in culture.
    Paredes-Sabja D; Sarker MR
    J Med Microbiol; 2012 Sep; 61(Pt 9):1208-1218. PubMed ID: 22595914
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Adherence of Clostridium perfringens spores to human intestinal epithelial Caco-2 cells.
    Sakanoue H; Nakano T; Sano K; Yasugi M; Monma C; Miyake M
    FEMS Microbiol Lett; 2018 Mar; 365(5):. PubMed ID: 29370364
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The effect of oxidation-reduction potential on spore germination, outgrowth, and vegetative growth of Clostridium tetani, Clostridium butyricum, and Bacillus subtilis.
    Hachisuka Y; Suzuki I; Morikawa K; Maeda S
    Microbiol Immunol; 1982; 26(9):803-11. PubMed ID: 6818433
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals.
    Setlow P
    J Appl Microbiol; 2006 Sep; 101(3):514-25. PubMed ID: 16907802
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Spore Heat Activation Requirements and Germination Responses Correlate with Sequences of Germinant Receptors and with the Presence of a Specific
    Krawczyk AO; de Jong A; Omony J; Holsappel S; Wells-Bennik MHJ; Kuipers OP; Eijlander RT
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130296
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Surface appendages of bacterial spores.
    Driks A
    Mol Microbiol; 2007 Feb; 63(3):623-5. PubMed ID: 17302795
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Differentiation of Vegetative Cells into Spores: a Kinetic Model Applied to Bacillus subtilis.
    Gauvry E; Mathot AG; Couvert O; Leguérinel I; Jules M; Coroller L
    Appl Environ Microbiol; 2019 May; 85(10):. PubMed ID: 30902849
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Modelling the influence of the sporulation temperature upon the bacterial spore heat resistance, application to heating process calculation.
    Leguérinel I; Couvert O; Mafart P
    Int J Food Microbiol; 2007 Feb; 114(1):100-4. PubMed ID: 17184868
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Bacillus spore wet heat resistance and evidence for the role of an expanded osmoregulatory spore cortex.
    Rao L; Liao X; Setlow P
    Lett Appl Microbiol; 2016 Oct; 63(4):247-53. PubMed ID: 27424522
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Influence of electrical properties on the evaluation of the surface hydrophobicity of Bacillus subtilis.
    Ahimou F; Paquot M; Jacques P; Thonart P; Rouxhet PG
    J Microbiol Methods; 2001 Jun; 45(2):119-26. PubMed ID: 11311397
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effect of different Bacillus subtilis lipopeptides on surface hydrophobicity and adhesion of Bacillus cereus 98/4 spores to stainless steel and Teflon.
    Shakerifard P; Gancel F; Jacques P; Faille C
    Biofouling; 2009; 25(6):533-41. PubMed ID: 19431000
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Characterization of spo0A homologues in diverse Bacillus and Clostridium species identifies a probable DNA-binding domain.
    Brown DP; Ganova-Raeva L; Green BD; Wilkinson SR; Young M; Youngman P
    Mol Microbiol; 1994 Nov; 14(3):411-26. PubMed ID: 7885226
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Killing the spores of Bacillus species by molecular iodine.
    Li Q; Korza G; Setlow P
    J Appl Microbiol; 2017 Jan; 122(1):54-64. PubMed ID: 27696602
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Contribution of spores to the ability of Clostridium difficile to adhere to surfaces.
    Joshi LT; Phillips DS; Williams CF; Alyousef A; Baillie L
    Appl Environ Microbiol; 2012 Nov; 78(21):7671-9. PubMed ID: 22923404
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Survival of Clostridium difficile spores at low water activity.
    Deng K; Talukdar PK; Sarker MR; Paredes-Sabja D; Torres JA
    Food Microbiol; 2017 Aug; 65():274-278. PubMed ID: 28400013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.