These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

641 related articles for article (PubMed ID: 2275546)

  • 41. The hydrolysis product of ICRF-187 promotes iron-catalysed hydroxyl radical production via the Fenton reaction.
    Thomas C; Vile GF; Winterbourn CC
    Biochem Pharmacol; 1993 May; 45(10):1967-72. PubMed ID: 8390256
    [TBL] [Abstract][Full Text] [Related]  

  • 42. NADPH-dependent drug redox cycling and lipid peroxidation in microsomes from human term placenta.
    Byczkowski JZ; Kulkarni AP
    Int J Biochem; 1989; 21(2):183-90. PubMed ID: 2501113
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Complex-formation and reduction of ferric iron by 2-oxo-4-thiomethylbutyric acid, and the production of hydroxyl radicals.
    Winston GW; Eibschutz OM; Strekas T; Cederbaum AI
    Biochem J; 1986 Apr; 235(2):521-9. PubMed ID: 3741403
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Menadione- (2-methyl-1,4-naphthoquinone-) dependent enzymatic redox cycling and calcium release by mitochondria.
    Frei B; Winterhalter KH; Richter C
    Biochemistry; 1986 Jul; 25(15):4438-43. PubMed ID: 3092856
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ferritin stimulation of lipid peroxidation by microsomes after chronic ethanol treatment: role of cytochrome P4502E1.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1996 Aug; 332(1):121-7. PubMed ID: 8806716
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inhibition of the oxidation of hydroxyl radical scavenging agents after alkaline phosphatase treatment of rat liver microsomes.
    Puntarulo S; Cederbaum AI
    Biochim Biophys Acta; 1991 May; 1074(1):12-8. PubMed ID: 1904277
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Redox cycling and increased oxygen utilization contribute to diquat-induced oxidative stress and cytotoxicity in Chinese hamster ovary cells overexpressing NADPH-cytochrome P450 reductase.
    Fussell KC; Udasin RG; Gray JP; Mishin V; Smith PJ; Heck DE; Laskin JD
    Free Radic Biol Med; 2011 Apr; 50(7):874-82. PubMed ID: 21215309
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Increased oxygen radical-dependent inactivation of metabolic enzymes by liver microsomes after chronic ethanol consumption.
    Dicker E; Cederbaum AI
    FASEB J; 1988 Oct; 2(13):2901-6. PubMed ID: 3169467
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Redox cycling of resorufin catalyzed by rat liver microsomal NADPH-cytochrome P450 reductase.
    Dutton DR; Reed GA; Parkinson A
    Arch Biochem Biophys; 1989 Feb; 268(2):605-16. PubMed ID: 2464338
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [The role of oxygen radicals formed during function of the membrane redox chain, in damage of nuclear DNA].
    Peskin AV
    Biokhimiia; 1996 Jan; 61(1):65-72. PubMed ID: 8679779
    [TBL] [Abstract][Full Text] [Related]  

  • 51. NADPH- and adriamycin-dependent microsomal release of iron and lipid peroxidation.
    Minotti G
    Arch Biochem Biophys; 1990 Mar; 277(2):268-76. PubMed ID: 2310194
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ferritin, lipid peroxidation and redox-cycling xenobiotics.
    Winterbourn CC; Vile GF; Monteiro HP
    Free Radic Res Commun; 1991; 12-13 Pt 1():107-14. PubMed ID: 1649077
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhibition of microsomal oxidation of alcohols and of hydroxyl-radical-scavenging agents by the iron-chelating agent desferrioxamine.
    Cederbaum AI; Dicker E
    Biochem J; 1983 Jan; 210(1):107-13. PubMed ID: 6303308
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An evaluation of the redox cycling potencies of paraquat and nitrofurantoin in microsomal and lung slice systems.
    Adam A; Smith LL; Cohen GM
    Biochem Pharmacol; 1990 Oct; 40(7):1533-9. PubMed ID: 2222508
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A possible role for membrane lipid peroxidation in anthracycline nephrotoxicity.
    Mimnaugh EG; Trush MA; Gram TE
    Biochem Pharmacol; 1986 Dec; 35(23):4327-35. PubMed ID: 3024646
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nitrofurantoin-stimulated reactive oxygen species production and genotoxicity in digestive gland microsomes and cytosol of the common mussel (Mytilus edulis L.).
    Garcia Martinez P; Winston GW; Metash-Dickey C; O'Hara SC; Livingstone DR
    Toxicol Appl Pharmacol; 1995 Apr; 131(2):332-41. PubMed ID: 7716774
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of EDTA and iron on the oxidation of hydroxyl radical scavenging agents and ethanol by rat liver microsomes.
    Feierman DE; Cederbaum AI
    Biochem Biophys Res Commun; 1983 Oct; 116(2):765-70. PubMed ID: 6418168
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cytotoxicity of the redox cycling compound diquat in isolated hepatocytes: involvement of hydrogen peroxide and transition metals.
    Sandy MS; Moldeus P; Ross D; Smith MT
    Arch Biochem Biophys; 1987 Nov; 259(1):29-37. PubMed ID: 2825600
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pro- and anti-oxidant activities of the mitochondrial respiratory chain: factors influencing NAD(P)H-induced lipid peroxidation.
    Glinn MA; Lee CP; Ernster L
    Biochim Biophys Acta; 1997 Jan; 1318(1-2):246-54. PubMed ID: 9030267
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Iron and CYP2E1-dependent oxidative stress and toxicity.
    Cederbaum AI
    Alcohol; 2003 Jun; 30(2):115-20. PubMed ID: 12957295
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.