These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 22755560)

  • 1. Local unitary transformation method for large-scale two-component relativistic calculations: case for a one-electron Dirac Hamiltonian.
    Seino J; Nakai H
    J Chem Phys; 2012 Jun; 136(24):244102. PubMed ID: 22755560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local unitary transformation method for large-scale two-component relativistic calculations. II. Extension to two-electron Coulomb interaction.
    Seino J; Nakai H
    J Chem Phys; 2012 Oct; 137(14):144101. PubMed ID: 23061833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local unitary transformation method toward practical electron correlation calculations with scalar relativistic effect in large-scale molecules.
    Seino J; Nakai H
    J Chem Phys; 2013 Jul; 139(3):034109. PubMed ID: 23883012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical energy gradient based on spin-free infinite-order Douglas-Kroll-Hess method with local unitary transformation.
    Nakajima Y; Seino J; Nakai H
    J Chem Phys; 2013 Dec; 139(24):244107. PubMed ID: 24387357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of Analytical Energy Gradient of Spin-Dependent General Hartree-Fock Method Based on the Infinite-Order Douglas-Kroll-Hess Relativistic Hamiltonian with Local Unitary Transformation.
    Nakajima Y; Seino J; Nakai H
    J Chem Theory Comput; 2016 May; 12(5):2181-90. PubMed ID: 27045757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order.
    Reiher M; Wolf A
    J Chem Phys; 2004 Dec; 121(22):10945-56. PubMed ID: 15634044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local relativistic exact decoupling.
    Peng D; Reiher M
    J Chem Phys; 2012 Jun; 136(24):244108. PubMed ID: 22755566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic shielding constants calculated by the infinite-order Douglas-Kroll-Hess method with electron-electron relativistic corrections.
    Seino J; Hada M
    J Chem Phys; 2010 May; 132(17):174105. PubMed ID: 20459154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gauge-origin independent formalism of two-component relativistic framework based on unitary transformation in nuclear magnetic shielding constant.
    Hayami M; Seino J; Nakai H
    J Chem Phys; 2018 Mar; 148(11):114109. PubMed ID: 29566518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic approximation to the projection on electronic states in the Douglas-Kroll-Hess approach to the relativistic Kohn-Sham method.
    Matveev AV; Rösch N
    J Chem Phys; 2008 Jun; 128(24):244102. PubMed ID: 18601312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation.
    Ilias M; Saue T
    J Chem Phys; 2007 Feb; 126(6):064102. PubMed ID: 17313208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytic energy gradients for the spin-free exact two-component theory using an exact block diagonalization for the one-electron Dirac Hamiltonian.
    Cheng L; Gauss J
    J Chem Phys; 2011 Aug; 135(8):084114. PubMed ID: 21895166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of electric-field gradients based on higher-order generalized Douglas-Kroll transformations.
    Neese F; Wolf A; Fleig T; Reiher M; Hess BA
    J Chem Phys; 2005 May; 122(20):204107. PubMed ID: 15945713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exact decoupling of the Dirac Hamiltonian. I. General theory.
    Reiher M; Wolf A
    J Chem Phys; 2004 Aug; 121(5):2037-47. PubMed ID: 15260757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-component relativistic methods for the heaviest elements.
    Kedziera D; Barysz M
    J Chem Phys; 2004 Oct; 121(14):6719-27. PubMed ID: 15473727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical evaluation of first-order electrical properties based on the spin-free Dirac-Coulomb Hamiltonian.
    Cheng L; Gauss J
    J Chem Phys; 2011 Jun; 134(24):244112. PubMed ID: 21721617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extension and acceleration of relativistic density functional theory based on transformed density operator.
    Ikabata Y; Oyama T; Hayami M; Seino J; Nakai H
    J Chem Phys; 2019 Apr; 150(16):164104. PubMed ID: 31042880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Range Separation Method for Density Functional Theory Based on Two-Electron Infinite-Order Two-Component Hamiltonian.
    Takashima C; Nakai H
    J Chem Theory Comput; 2024 Jan; 20(2):738-751. PubMed ID: 38193820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relativistic electronic structure theory.
    Nakajima T; Yanai T; Hirao K
    J Comput Chem; 2002 Jun; 23(8):847-60. PubMed ID: 12012361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An arbitrary order Douglas-Kroll method with polynomial cost.
    Peng D; Hirao K
    J Chem Phys; 2009 Jan; 130(4):044102. PubMed ID: 19191372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.