These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 22755664)

  • 1. Parametric noise squeezing and parametric resonance of microcantilevers in air and liquid environments.
    Prakash G; Raman A; Rhoads J; Reifenberger RG
    Rev Sci Instrum; 2012 Jun; 83(6):065109. PubMed ID: 22755664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High efficiency laser photothermal excitation of microcantilever vibrations in air and liquids.
    Kiracofe D; Kobayashi K; Labuda A; Raman A; Yamada H
    Rev Sci Instrum; 2011 Jan; 82(1):013702. PubMed ID: 21280832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the optical lever sensitivity of microcantilevers for dynamic atomic force microscopy via integrated low frequency paddles.
    Shaik NH; Reifenberger RG; Raman A
    Nanotechnology; 2016 May; 27(19):195502. PubMed ID: 27040811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of the higher eigenmodes of a microcantilever: applications in atomic force microscopy.
    Karvinen KS; Moheimani SO
    Ultramicroscopy; 2014 Feb; 137():66-71. PubMed ID: 24361530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High resolution atomic force microscopy with an active piezoelectric microcantilever.
    Mahmoodi Nasrabadi H; Mahdavi M; Soleymaniha M; Moheimani SOR
    Rev Sci Instrum; 2022 Jul; 93(7):073706. PubMed ID: 35922324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feedback-enhanced parametric squeezing of mechanical motion.
    Vinante A; Falferi P
    Phys Rev Lett; 2013 Nov; 111(20):207203. PubMed ID: 24289708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous-wave nonclassical light with gigahertz squeezing bandwidth.
    Ast S; Samblowski A; Mehmet M; Steinlechner S; Eberle T; Schnabel R
    Opt Lett; 2012 Jun; 37(12):2367-9. PubMed ID: 22739910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excess quantum noise in optical parametric chirped-pulse amplification.
    Manzoni C; Moses J; Kärtner FX; Cerullo G
    Opt Express; 2011 Apr; 19(9):8357-66. PubMed ID: 21643087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamical response and noise limit of a parametrically pumped microcantilever sensor in a Phase-Locked Loop.
    Mouro J; Paoletti P; Sartore M; Tiribilli B
    Sci Rep; 2023 Feb; 13(1):2157. PubMed ID: 36750591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving tapping mode atomic force microscopy with piezoelectric cantilevers.
    Rogers B; Manning L; Sulchek T; Adams JD
    Ultramicroscopy; 2004 Aug; 100(3-4):267-76. PubMed ID: 15231319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Squeezing a thermal mechanical oscillator by stabilized parametric effect on the optical spring.
    Pontin A; Bonaldi M; Borrielli A; Cataliotti FS; Marino F; Prodi GA; Serra E; Marin F
    Phys Rev Lett; 2014 Jan; 112(2):023601. PubMed ID: 24484010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Squeezed amplification in a nondegenerate parametric amplifier.
    Wong NC
    Opt Lett; 1991 Nov; 16(21):1698-700. PubMed ID: 19784113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parametric Amplification and Noise Squeezing in Room Temperature Atomic Vapors.
    Guarrera V; Gartman R; Bevilacqua G; Barontini G; Chalupczak W
    Phys Rev Lett; 2019 Jul; 123(3):033601. PubMed ID: 31386453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring the Sensitivity of Microcantilevers To Monitor the Mass of Single Adherent Living Cells.
    Incaviglia I; Herzog S; Fläschner G; Strohmeyer N; Tosoratti E; Müller DJ
    Nano Lett; 2023 Jan; 23(2):588-596. PubMed ID: 36607826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classical low-coherence interferometry based on broadband parametric fluorescence and amplification.
    Le Gouët J; Venkatraman D; Wong FN; Shapiro JH
    Opt Express; 2009 Sep; 17(20):17874-87. PubMed ID: 19907576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of frequency noise and frequency shift by phase shifting elements in frequency modulation atomic force microscopy.
    Kobayashi K; Yamada H; Matsushige K
    Rev Sci Instrum; 2011 Mar; 82(3):033702. PubMed ID: 21456746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact representation of the spatial modes of a phase-sensitive image amplifier.
    Annamalai M; Stelmakh N; Kumar P; Vasilyev M
    Opt Express; 2013 Nov; 21(23):28134-53. PubMed ID: 24514326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of squeezed light with a monolithic optical parametric oscillator: simultaneous achievement of phase matching and cavity resonance by temperature control.
    Yonezawa H; Nagashima K; Furusawa A
    Opt Express; 2010 Sep; 18(19):20143-50. PubMed ID: 20940905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-Sensitive Minute Mass Sensing Using a Microcantilever Virtually Coupled with a Virtual Cantilever.
    Kasai Y; Yabuno H; Yamamoto Y; Matsumoto S
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32218247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of a comb of optical squeezing over many gigahertz of bandwidth.
    Senior RJ; Milford GN; Janousek J; Dunlop AE; Wagner K; Bachor HA; Ralph TC; Huntington EH; Harb CC
    Opt Express; 2007 Apr; 15(9):5310-7. PubMed ID: 19532784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.