These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 22757497)

  • 1. A simple method for in vivo measurement of implant rod three-dimensional geometry during scoliosis surgery.
    Salmingo RA; Tadano S; Fujisaki K; Abe Y; Ito M
    J Biomech Eng; 2012 May; 134(5):054502. PubMed ID: 22757497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraoperative implant rod three-dimensional geometry measured by dual camera system during scoliosis surgery.
    Salmingo RA; Tadano S; Abe Y; Ito M
    Biomed Mater Eng; 2016 May; 27(1):49-62. PubMed ID: 27175467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corrective force analysis for scoliosis from implant rod deformation.
    Salmingo R; Tadano S; Fujisaki K; Abe Y; Ito M
    Clin Biomech (Bristol, Avon); 2012 Jul; 27(6):545-50. PubMed ID: 22321374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship of forces acting on implant rods and degree of scoliosis correction.
    Salmingo RA; Tadano S; Fujisaki K; Abe Y; Ito M
    Clin Biomech (Bristol, Avon); 2013 Feb; 28(2):122-8. PubMed ID: 23273729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of implant rod curvature on sagittal correction of scoliosis deformity.
    Salmingo RA; Tadano S; Abe Y; Ito M
    Spine J; 2014 Aug; 14(8):1432-9. PubMed ID: 24275616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical modeling of posterior instrumentation of the scoliotic spine.
    Aubin CE; Petit Y; Stokes IA; Poulin F; Gardner-Morse M; Labelle H
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):27-32. PubMed ID: 12623435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preclinical testing of a wedge-rod system for fusionless correction of scoliosis.
    Betz RR; Cunningham B; Selgrath C; Drewry T; Sherman MC
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S275-8. PubMed ID: 14560203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraoperative three dimensional correction during in situ contouring surgery by using a numerical model.
    Lafon Y; Steib JP; Skalli W
    Spine (Phila Pa 1976); 2010 Feb; 35(4):453-9. PubMed ID: 20110840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Preliminary Study on a Novel Growth Guidance Rod System for Early-Onset Scoliosis in a Sheep Model.
    Li K; Zhao S; Wei X; Wang X; Sun J; He Y; Zhen J
    Spine (Phila Pa 1976); 2015 Jun; 40(11):767-72. PubMed ID: 26091152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guided-growth implants in the treatment of early onset scoliosis. A pilot study.
    Latalski M; Fatyga M; Kołtowski K; Menartowicz P; Repko M; Filipovič M
    Ortop Traumatol Rehabil; 2013; 15(1):23-9. PubMed ID: 23510818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous double-rod rotation technique in posterior instrumentation surgery for correction of adolescent idiopathic scoliosis.
    Ito M; Abumi K; Kotani Y; Takahata M; Sudo H; Hojo Y; Minami A
    J Neurosurg Spine; 2010 Mar; 12(3):293-300. PubMed ID: 20192630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional stereoradiographic modeling of rib cage before and after spinal growing rod procedures in early-onset scoliosis.
    Sabourin M; Jolivet E; Miladi L; Wicart P; Rampal V; Skalli W
    Clin Biomech (Bristol, Avon); 2010 May; 25(4):284-91. PubMed ID: 20129725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical analysis of vertebral derotation techniques for the surgical correction of thoracic scoliosis. A numerical study through case simulations and a sensitivity analysis.
    Martino J; Aubin CE; Labelle H; Wang X; Parent S
    Spine (Phila Pa 1976); 2013 Jan; 38(2):E73-83. PubMed ID: 23124259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instrumented forceps for measuring tensile forces in the rod of the VDS implant during correction of scoliosis.
    Klöckner C; Rohlmann A; Bergmann G
    Biomed Tech (Berl); 2003 Dec; 48(12):362-4. PubMed ID: 14740525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of different surgical strategies on screw forces after correction of scoliosis with a VDS implant.
    Rohlmann A; Richter M; Zander T; Klöckner C; Bergmann G
    Eur Spine J; 2006 Apr; 15(4):457-64. PubMed ID: 15912346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical simulations of scoliotic spinal deformity and correction.
    Noone G; Mazumdar J; Kothiyal KP; Ghista DN; Subbaraj K; Viviani GR
    Australas Phys Eng Sci Med; 1993 Jun; 16(2):63-74. PubMed ID: 8357305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward the next generation of simulator for intraoperative navigation of scoliotic spine surgeries.
    Cartiaux O; Aubin CÉ; Labelle H; Cheriet F
    Stud Health Technol Inform; 2012; 176():322-5. PubMed ID: 22744520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An FE investigation simulating intra-operative corrective forces applied to correct scoliosis deformity.
    Little JP; Izatt MT; Labrom RD; Askin GN; Adam CJ
    Scoliosis; 2013 May; 8(1):9. PubMed ID: 23680391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Would CoCr rods provide better correctional forces than stainless steel or titanium for rigid scoliosis curves?
    Serhan H; Mhatre D; Newton P; Giorgio P; Sturm P
    J Spinal Disord Tech; 2013 Apr; 26(2):E70-4. PubMed ID: 22832558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of anterior and posterior double-rod instrumentation for thoracic idiopathic scoliosis: results of 141 patients.
    Muschik MT; Kimmich H; Demmel T
    Eur Spine J; 2006 Jul; 15(7):1128-38. PubMed ID: 16470398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.