These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 22757505)

  • 1. Stretching affects intracellular oxygen levels: three-dimensional multiphysics studies.
    Leopold E; Gefen A
    J Biomech Eng; 2012 Jun; 134(6):064501. PubMed ID: 22757505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of compressive deformations on the rate of build-up of oxygen in isolated skeletal muscle cells.
    Leopold E; Sopher R; Gefen A
    Med Eng Phys; 2011 Nov; 33(9):1072-8. PubMed ID: 21600830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-to-cell variability in deformations across compressed myoblasts.
    Slomka N; Gefen A
    J Biomech Eng; 2011 Aug; 133(8):081007. PubMed ID: 21950900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between strain levels and permeability of the plasma membrane in statically stretched myoblasts.
    Slomka N; Gefen A
    Ann Biomed Eng; 2012 Mar; 40(3):606-18. PubMed ID: 21979169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular diffusion of oxygen and hypoxic sensing: role of mitochondrial respiration.
    Takahashi E; Sato M
    Adv Exp Med Biol; 2010; 669():213-7. PubMed ID: 20217352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confocal microscopy-based three-dimensional cell-specific modeling for large deformation analyses in cellular mechanics.
    Slomka N; Gefen A
    J Biomech; 2010 Jun; 43(9):1806-16. PubMed ID: 20188374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating single cell experiments in mechanical testing of adipocytes.
    Katzengold R; Shoham N; Benayahu D; Gefen A
    Biomech Model Mechanobiol; 2015 Jun; 14(3):537-47. PubMed ID: 25212098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural finite element analysis to explain cell mechanics variability.
    Barreto S; Perrault CM; Lacroix D
    J Mech Behav Biomed Mater; 2014 Oct; 38():219-31. PubMed ID: 24389336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element analysis of mechanics of neovessels with intraplaque hemorrhage in carotid atherosclerosis.
    Lu J; Duan W; Qiao A
    Biomed Eng Online; 2015; 14 Suppl 1(Suppl 1):S3. PubMed ID: 25603398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiscale smeared finite element model for mass transport in biological tissue: From blood vessels to cells and cellular organelles.
    Kojic M; Milosevic M; Simic V; Koay EJ; Kojic N; Ziemys A; Ferrari M
    Comput Biol Med; 2018 Aug; 99():7-23. PubMed ID: 29807251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiphysics modeling of electrochemomechanically smart microgels responsive to coupled pH/electric stimuli.
    Li H; Luo R; Lam KY
    Macromol Biosci; 2009 Mar; 9(3):287-97. PubMed ID: 19009512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mechanistic insight into the mechanical role of the stratum corneum during stretching and compression of the skin.
    Leyva-Mendivil MF; Page A; Bressloff NW; Limbert G
    J Mech Behav Biomed Mater; 2015 Sep; 49():197-219. PubMed ID: 26042766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cancer cell mechanics with altered cytoskeletal behavior and substrate effects: A 3D finite element modeling study.
    Katti DR; Katti KS
    J Mech Behav Biomed Mater; 2017 Dec; 76():125-134. PubMed ID: 28571747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on establishment and mechanics application of finite element model of bovine eye.
    Cui YH; Huang JF; Cheng SY; Wei W; Shang L; Li N; Xiong K
    BMC Ophthalmol; 2015 Aug; 15():101. PubMed ID: 26268321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element analysis of the deformation of deep veins in the lower limb under external compression.
    Wang Y; Downie S; Wood N; Firmin D; Xu XY
    Med Eng Phys; 2013 Apr; 35(4):515-23. PubMed ID: 22819344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating the three-dimensional deformation of in vivo facial skin.
    Flynn C; Taberner AJ; Nielsen PM; Fels S
    J Mech Behav Biomed Mater; 2013 Dec; 28():484-94. PubMed ID: 23566769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A finite element model of cell-matrix interactions to study the differential effect of scaffold composition on chondrogenic response to mechanical stimulation.
    Appelman TP; Mizrahi J; Seliktar D
    J Biomech Eng; 2011 Apr; 133(4):041010. PubMed ID: 21428684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale modeling of trabecular bone marrow: understanding the micromechanical environment of mesenchymal stem cells during osteoporosis.
    Vaughan TJ; Voisin M; Niebur GL; McNamara LM
    J Biomech Eng; 2015 Jan; 137(1):. PubMed ID: 25363305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel method for assessing adherent single-cell stiffness in tension: design and testing of a substrate-based live cell functional imaging device.
    Bartalena G; Grieder R; Sharma RI; Zambelli T; Muff R; Snedeker JG
    Biomed Microdevices; 2011 Apr; 13(2):291-301. PubMed ID: 21120698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A three-dimensional finite element model for biomechanical analysis of the hip.
    Chen GX; Yang L; Li K; He R; Yang B; Zhan Y; Wang ZJ; Yu BN; Jian Z
    Cell Biochem Biophys; 2013 Nov; 67(2):803-8. PubMed ID: 23504633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.