These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 22757548)
1. Kinetic Monte Carlo simulations of travelling pulses and spiral waves in the lattice Lotka-Volterra model. Makeev AG; Kurkina ES; Kevrekidis IG Chaos; 2012 Jun; 22(2):023141. PubMed ID: 22757548 [TBL] [Abstract][Full Text] [Related]
2. Termination of spiral wave breakup in a Fitzhugh-Nagumo model via short and long duration stimuli. Gray RA Chaos; 2002 Sep; 12(3):941-951. PubMed ID: 12779618 [TBL] [Abstract][Full Text] [Related]
3. Fractal properties of the lattice Lotka-Volterra model. Tsekouras GA; Provata A Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):016204. PubMed ID: 11800765 [TBL] [Abstract][Full Text] [Related]
4. Lotka-Volterra predator-prey model with periodically varying carrying capacity. Swailem M; Täuber UC Phys Rev E; 2023 Jun; 107(6-1):064144. PubMed ID: 37464668 [TBL] [Abstract][Full Text] [Related]
5. Lotka-Volterra equations with chemotaxis: walls, barriers and travelling waves. Pettet GJ; McElwain DL; Norbury J IMA J Math Appl Med Biol; 2000 Dec; 17(4):395-413. PubMed ID: 11270751 [TBL] [Abstract][Full Text] [Related]
6. Speed determinacy of travelling waves for a three-component lattice Lotka-Volterra competition system. Tang Y; Pan C; Wang H; Ouyang Z J Biol Dyn; 2022 Dec; 16(1):340-353. PubMed ID: 34319222 [TBL] [Abstract][Full Text] [Related]
7. Existence, Uniqueness and Asymptotic Stability of Time Periodic Traveling Waves for a Periodic Lotka-Volterra Competition System with Diffusion. Zhao G; Ruan S J Math Pures Appl; 2011 Jun; 96(6):627-671. PubMed ID: 21572575 [TBL] [Abstract][Full Text] [Related]
8. Delay-induced inward and outward spiral waves in oscillatory medium. Hu HX; Ji L; Li QS J Chem Phys; 2008 Jan; 128(4):044904. PubMed ID: 18247997 [TBL] [Abstract][Full Text] [Related]
9. Surface phase transitions in one-dimensional channels arranged in a triangular cross-sectional structure: theory and Monte Carlo simulations. Pasinetti PM; Romá F; Riccardo JL; Ramirez-Pastor AJ J Chem Phys; 2006 Dec; 125(21):214705. PubMed ID: 17166038 [TBL] [Abstract][Full Text] [Related]
10. Patterns of spiral wave attenuation by low-frequency periodic planar fronts. de la Casa MA; de la Rubia FJ; Ivanov PCh Chaos; 2007 Mar; 17(1):015109. PubMed ID: 17411266 [TBL] [Abstract][Full Text] [Related]
11. Characterization of multiple spiral wave dynamics as a stochastic predator-prey system. Otani NF; Mo A; Mannava S; Fenton FH; Cherry EM; Luther S; Gilmour RF Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021913. PubMed ID: 18850871 [TBL] [Abstract][Full Text] [Related]
12. Periodic forcing and feedback control of nonlinear lumped oscillators and meandering spiral waves. Zykov VS; Bordiougov G; Brandtstädter H; Gerdes I; Engel H Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016214. PubMed ID: 12935232 [TBL] [Abstract][Full Text] [Related]
13. Lotka-Volterra versus May-Leonard formulations of the spatial stochastic rock-paper-scissors model: The missing link. Avelino PP; de Oliveira BF; Trintin RS Phys Rev E; 2022 Feb; 105(2-1):024309. PubMed ID: 35291086 [TBL] [Abstract][Full Text] [Related]
14. Bistable wave speed of the Lotka-Volterra competition model. Ma M; Zhang Q; Yue J; Ou C J Biol Dyn; 2020 Dec; 14(1):608-620. PubMed ID: 32706320 [TBL] [Abstract][Full Text] [Related]
15. Diffusion of particles over dynamically disordered lattice. Tarasenko A; Jastrabik L Phys Chem Chem Phys; 2011 Feb; 13(6):2300-6. PubMed ID: 21113513 [TBL] [Abstract][Full Text] [Related]
16. Oscillatory reactive dynamics on surfaces: a lattice limit cycle model. Shabunin AV; Baras F; Provata A Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036219. PubMed ID: 12366236 [TBL] [Abstract][Full Text] [Related]
17. Complex spiral wave dynamics in a spatially distributed ionic model of cardiac electrical activity. Courtemanche M Chaos; 1996 Dec; 6(4):579-600. PubMed ID: 12780289 [TBL] [Abstract][Full Text] [Related]
19. Stochastic transitions in a bistable reaction system on the membrane. Kochanczyk M; Jaruszewicz J; Lipniacki T J R Soc Interface; 2013 Jul; 10(84):20130151. PubMed ID: 23635492 [TBL] [Abstract][Full Text] [Related]
20. Spontaneous formation of dynamical patterns with fractal fronts in the cyclic lattice Lotka-Volterra model. Provata A; Tsekouras GA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056602. PubMed ID: 12786291 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]