These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22757556)

  • 21. Intermittent and sustained periodic windows in networked chaotic Rössler oscillators.
    He Z; Sun Y; Zhan M
    Chaos; 2013 Dec; 23(4):043139. PubMed ID: 24387578
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coherent regimes of globally coupled dynamical systems.
    De Monte S; d'Ovidio F; Mosekilde E
    Phys Rev Lett; 2003 Feb; 90(5):054102. PubMed ID: 12633359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phase synchronization between collective rhythms of globally coupled oscillator groups: noiseless nonidentical case.
    Kawamura Y; Nakao H; Arai K; Kori H; Kuramoto Y
    Chaos; 2010 Dec; 20(4):043110. PubMed ID: 21198080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lag and anticipating synchronization without time-delay coupling.
    Corron NJ; Blakely JN; Pethel SD
    Chaos; 2005 Jun; 15(2):23110. PubMed ID: 16035886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Eliminating delay-induced oscillation death by gradient coupling.
    Zou W; Yao C; Zhan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056203. PubMed ID: 21230559
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synchronization of a class of coupled chaotic delayed systems with parameter mismatch.
    Huang T; Li C; Liao X
    Chaos; 2007 Sep; 17(3):033121. PubMed ID: 17903003
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amplitude death in oscillator networks with variable-delay coupling.
    Gjurchinovski A; Zakharova A; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032915. PubMed ID: 24730921
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using critical curves to compute master stability islands for amplitude death in networks of delay-coupled oscillators.
    Huddy SR
    Chaos; 2020 Jan; 30(1):013118. PubMed ID: 32013506
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synchronization in nonidentical complex Ginzburg-Landau equations.
    Zhou CT
    Chaos; 2006 Mar; 16(1):013124. PubMed ID: 16599755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emergent rhythms in coupled nonlinear oscillators due to dynamic interactions.
    Dixit S; Nag Chowdhury S; Prasad A; Ghosh D; Shrimali MD
    Chaos; 2021 Jan; 31(1):011105. PubMed ID: 33754786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amplitude death in oscillators coupled by a one-way ring time-delay connection.
    Konishi K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066201. PubMed ID: 15697478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lag synchronization and scaling of chaotic attractor in coupled system.
    Bhowmick SK; Pal P; Roy PK; Dana SK
    Chaos; 2012 Jun; 22(2):023151. PubMed ID: 22757558
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emergent dynamics in delayed attractive-repulsively coupled networks.
    Kundu P; Sharma L; Nandan M; Ghosh D; Hens C; Pal P
    Chaos; 2019 Jan; 29(1):013112. PubMed ID: 30709156
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing synchrony in chaotic oscillators by dynamic relaying.
    Banerjee R; Ghosh D; Padmanaban E; Ramaswamy R; Pecora LM; Dana SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):027201. PubMed ID: 22463360
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effective suppressibility of chaos.
    López ÁG; Seoane JM; Sanjuán MA
    Chaos; 2013 Jun; 23(2):023107. PubMed ID: 23822472
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Master stability islands for amplitude death in networks of delay-coupled oscillators.
    Huddy SR; Sun J
    Phys Rev E; 2016 May; 93(5):052209. PubMed ID: 27300882
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of asymmetry parameter on the dynamical states of nonlocally coupled nonlinear oscillators.
    Gopal R; Chandrasekar VK; Senthilkumar DV; Venkatesan A; Lakshmanan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062916. PubMed ID: 26172781
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phase-locked patterns and amplitude death in a ring of delay-coupled limit cycle oscillators.
    Dodla R; Sen A; Johnston GL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056217. PubMed ID: 15244914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of amplitude chimeras by time delay in oscillator networks.
    Gjurchinovski A; Schöll E; Zakharova A
    Phys Rev E; 2017 Apr; 95(4-1):042218. PubMed ID: 28505829
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Origin of amplitude synchronization in coupled nonidentical oscillators.
    Qiu Q; Zhou B; Wang P; He L; Xiao Y; Yang Z; Zhan M
    Phys Rev E; 2020 Feb; 101(2-1):022210. PubMed ID: 32168617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.