These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2275922)

  • 1. The in vivo auto-oxidation of polyether polyurethane by metal ions.
    Stokes K; Urbanski P; Upton J
    J Biomater Sci Polym Ed; 1990; 1(3):207-30. PubMed ID: 2275922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers.
    Simmons A; Hyvarinen J; Odell RA; Martin DJ; Gunatillake PA; Noble KR; Poole-Warren LA
    Biomaterials; 2004 Sep; 25(20):4887-900. PubMed ID: 15109849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of polyether polyurethane inner insulation in bipolar pacemaker leads.
    Wiggins MJ; Wilkoff B; Anderson JM; Hiltner A
    J Biomed Mater Res; 2001 May; 58(3):302-7. PubMed ID: 11319745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo biostability of polyether polyurethanes with fluoropolymer and polyethylene oxide surface modifying endgroups; resistance to metal ion oxidation.
    Ward R; Anderson J; McVenes R; Stokes K
    J Biomed Mater Res A; 2007 Jan; 80(1):34-44. PubMed ID: 16958046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo biostability of polysiloxane polyether polyurethanes: resistance to metal ion oxidation.
    Ward B; Anderson J; Ebert M; McVenes R; Stokes K
    J Biomed Mater Res A; 2006 May; 77(2):380-9. PubMed ID: 16425243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autooxidative degradation of implanted polyether polyurethane devices.
    Stokes K; Coury A; Urbanski P
    J Biomater Appl; 1987 Apr; 1(4):411-48. PubMed ID: 3506953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of explanted polyurethane cardiac pacing leads and of polyurethane.
    Chawla AS; Blais P; Hinberg I; Johnson D
    Biomater Artif Cells Artif Organs; 1988; 16(4):785-800. PubMed ID: 3219417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part I: materials selection and evaluation.
    Khan I; Smith N; Jones E; Finch DS; Cameron RE
    Biomaterials; 2005 Feb; 26(6):621-31. PubMed ID: 15282140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo biostability of polyether polyurethanes with polyethylene oxide surface-modifying end groups; resistance to biologic oxidation and stress cracking.
    Ebert M; Ward B; Anderson J; McVenes R; Stokes K
    J Biomed Mater Res A; 2005 Oct; 75(1):175-84. PubMed ID: 16041797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyurethane elastomer biostability.
    Stokes K; McVenes R; Anderson JM
    J Biomater Appl; 1995 Apr; 9(4):321-54. PubMed ID: 9309503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polydimethylsiloxane/polyether-mixed macrodiol-based polyurethane elastomers: biostability.
    Martin DJ; Warren LA; Gunatillake PA; McCarthy SJ; Meijs GF; Schindhelm K
    Biomaterials; 2000 May; 21(10):1021-9. PubMed ID: 10768754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long term in vitro biostability of segmented polyisobutylene-based thermoplastic polyurethanes.
    Cozzens D; Ojha U; Kulkarni P; Faust R; Desai S
    J Biomed Mater Res A; 2010 Dec; 95(3):774-82. PubMed ID: 20725977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corrosion and degradation of a polyurethane/Co-Ni-Cr-Mo pacemaker lead.
    Sung P; Fraker AC
    J Biomed Mater Res; 1987 Dec; 21(A3 Suppl):287-97. PubMed ID: 3429467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyether polyurethanes: biostable or not?
    Stokes KB
    J Biomater Appl; 1988 Oct; 3(2):228-59. PubMed ID: 3204495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative blood compatibility of polyether vs polycarbonate urethanes by epifluorescent video microscopy.
    Mizumoto D; Nojiri C; Inomata Y; Onishi M; Waki M; Kido T; Sugiyama T; Senshu K; Uchida K; Sakai K; Akutsu T
    ASAIO J; 1997; 43(5):M500-4. PubMed ID: 9360093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of soft-segment chemistry on polyurethane biostability during in vitro fatigue loading.
    Wiggins MJ; MacEwan M; Anderson JM; Hiltner A
    J Biomed Mater Res A; 2004 Mar; 68(4):668-83. PubMed ID: 14986322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of strain state on the biostability of a poly(etherurethane urea) elastomer.
    Schubert MA; Wiggins MJ; Anderson JM; Hiltner A
    J Biomed Mater Res; 1997 Jun; 35(3):319-28. PubMed ID: 9138066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part II: in vivo investigation.
    Khan I; Smith N; Jones E; Finch DS; Cameron RE
    Biomaterials; 2005 Feb; 26(6):633-43. PubMed ID: 15282141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo biostability of polysiloxane polyether polyurethanes: resistance to biologic oxidation and stress cracking.
    Ward R; Anderson J; McVenes R; Stokes K
    J Biomed Mater Res A; 2006 Jun; 77(3):580-9. PubMed ID: 16506175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro oxidative stability of high strength siloxane poly(urethane-urea) elastomers based on linked-macrodiol.
    Dandeniyage LS; Knower W; Adhikari R; Bown M; Shanks R; Adhikari B; Gunatillake PA
    J Biomed Mater Res B Appl Biomater; 2019 Nov; 107(8):2557-2565. PubMed ID: 30835945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.