These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 22759377)
1. An investigation of suitable bag materials for the collection and storage of breath samples containing hydrogen cyanide. Gilchrist FJ; Razavi C; Webb AK; Jones AM; Spaněl P; Smith D; Lenney W J Breath Res; 2012 Sep; 6(3):036004. PubMed ID: 22759377 [TBL] [Abstract][Full Text] [Related]
2. Hydrogen cyanide concentrations in the breath of adult cystic fibrosis patients with and without Pseudomonas aeruginosa infection. Gilchrist FJ; Bright-Thomas RJ; Jones AM; Smith D; Spaněl P; Webb AK; Lenney W J Breath Res; 2013 Jun; 7(2):026010. PubMed ID: 23680696 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen cyanide as a biomarker for Pseudomonas aeruginosa in the breath of children with cystic fibrosis. Enderby B; Smith D; Carroll W; Lenney W Pediatr Pulmonol; 2009 Feb; 44(2):142-7. PubMed ID: 19148935 [TBL] [Abstract][Full Text] [Related]
4. Quantification of hydrogen cyanide (HCN) in breath using selected ion flow tube mass spectrometry--HCN is not a biomarker of Pseudomonas in chronic suppurative lung disease. Dummer J; Storer M; Sturney S; Scott-Thomas A; Chambers S; Swanney M; Epton M J Breath Res; 2013 Mar; 7(1):017105. PubMed ID: 23445778 [TBL] [Abstract][Full Text] [Related]
5. Quantification of methyl thiocyanate in the headspace of Pseudomonas aeruginosa cultures and in the breath of cystic fibrosis patients by selected ion flow tube mass spectrometry. Shestivska V; Nemec A; Dřevínek P; Sovová K; Dryahina K; Spaněl P Rapid Commun Mass Spectrom; 2011 Sep; 25(17):2459-67. PubMed ID: 21818806 [TBL] [Abstract][Full Text] [Related]
6. Detection of volatile compounds emitted by Pseudomonas aeruginosa using selected ion flow tube mass spectrometry. Carroll W; Lenney W; Wang T; Spanel P; Alcock A; Smith D Pediatr Pulmonol; 2005 May; 39(5):452-6. PubMed ID: 15765542 [TBL] [Abstract][Full Text] [Related]
7. Quantification of hydrogen cyanide in humid air by selected ion flow tube mass spectrometry. Spanĕl P; Wang T; Smith D Rapid Commun Mass Spectrom; 2004; 18(16):1869-73. PubMed ID: 15329882 [TBL] [Abstract][Full Text] [Related]
8. Background levels and diurnal variations of hydrogen cyanide in breath and emitted from skin. Schmidt FM; Metsälä M; Vaittinen O; Halonen L J Breath Res; 2011 Dec; 5(4):046004. PubMed ID: 21808098 [TBL] [Abstract][Full Text] [Related]
9. Hydrogen cyanide, a volatile biomarker of Pseudomonas aeruginosa infection. Smith D; Spaněl P; Gilchrist FJ; Lenney W J Breath Res; 2013 Dec; 7(4):044001. PubMed ID: 24287489 [TBL] [Abstract][Full Text] [Related]
10. Impact of breath sample collection method and length of storage of breath samples in Tedlar bags on the level of selected volatiles assessed using gas chromatography-ion mobility spectrometry (GC-IMS). Czippelová B; Nováková S; Šarlinová M; Baranovičová E; Urbanová A; Turianiková Z; Krohová JČ; Halašová E; Škovierová H J Breath Res; 2024 May; 18(3):. PubMed ID: 38701772 [TBL] [Abstract][Full Text] [Related]
11. Selected ion flow tube mass spectrometry of exhaled breath condensate headspace. Cáp P; Dryahina K; Pehal F; Spanel P Rapid Commun Mass Spectrom; 2008 Sep; 22(18):2844-50. PubMed ID: 18712707 [TBL] [Abstract][Full Text] [Related]
12. From molecules in space to molecules in breath. Smith D Paediatr Respir Rev; 2016 Jan; 17():50-2. PubMed ID: 26541224 [TBL] [Abstract][Full Text] [Related]
13. On the use of Tedlar® bags for breath-gas sampling and analysis. Beauchamp J; Herbig J; Gutmann R; Hansel A J Breath Res; 2008 Dec; 2(4):046001. PubMed ID: 21386188 [TBL] [Abstract][Full Text] [Related]
14. Breath concentration of acetic acid vapour is elevated in patients with cystic fibrosis. Smith D; Sovová K; Dryahina K; Doušová T; Dřevínek P; Španěl P J Breath Res; 2016 May; 10(2):021002. PubMed ID: 27184114 [TBL] [Abstract][Full Text] [Related]
15. In vitro SIFT-MS validation of a breath fractionating device using a model VOC and ventilation system. Seeley MJ; Hu WP; Scotter JM; Storer MK; Shaw GM J Breath Res; 2009 Mar; 3(1):016001. PubMed ID: 21383449 [TBL] [Abstract][Full Text] [Related]
16. Variation in hydrogen cyanide production between different strains of Pseudomonas aeruginosa. Gilchrist FJ; Alcock A; Belcher J; Brady M; Jones A; Smith D; Spanĕl P; Webb K; Lenney W Eur Respir J; 2011 Aug; 38(2):409-14. PubMed ID: 21273393 [TBL] [Abstract][Full Text] [Related]
17. Highly selective and sensitive online measurement of trace exhaled HCN by acetone-assisted negative photoionization time-of-flight mass spectrometry with in-source CID. Xie Y; Li Q; Hua L; Chen P; Hu F; Wan N; Li H Anal Chim Acta; 2020 May; 1111():31-39. PubMed ID: 32312394 [TBL] [Abstract][Full Text] [Related]
18. Real-time versus thermal desorption selected ion flow tube mass spectrometry for quantification of breath volatiles. Slingers G; Vanden Eede M; Lindekens J; Spruyt M; Goelen E; Raes M; Koppen G Rapid Commun Mass Spectrom; 2021 Feb; 35(4):e8994. PubMed ID: 33125775 [TBL] [Abstract][Full Text] [Related]
19. Investigation of organic vapor losses to condensed water vapor in Tedlar bags used for exhaled-breath sampling. Groves WA; Zellers ET Am Ind Hyg Assoc J; 1996 Mar; 57(3):257-63. PubMed ID: 8776196 [TBL] [Abstract][Full Text] [Related]
20. The suitability of Tedlar bags for breath sampling in medical diagnostic research. Steeghs MM; Cristescu SM; Harren FJ Physiol Meas; 2007 Jan; 28(1):73-84. PubMed ID: 17151421 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]