These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 22759404)
1. An inverse metabolic engineering approach for the design of an improved host platform for over-expression of recombinant proteins in Escherichia coli. Ghosh C; Gupta R; Mukherjee KJ Microb Cell Fact; 2012 Jul; 11():93. PubMed ID: 22759404 [TBL] [Abstract][Full Text] [Related]
2. The ribB FMN riboswitch from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis. Pedrolli D; Langer S; Hobl B; Schwarz J; Hashimoto M; Mack M FEBS J; 2015 Aug; 282(16):3230-42. PubMed ID: 25661987 [TBL] [Abstract][Full Text] [Related]
3. Identifying genomic targets for protein over-expression by "omics" analysis of Quiescent Escherichia coli cultures. Mahalik S; Sharma AK; Jain P; Mukherjee KJ Microb Cell Fact; 2017 Jul; 16(1):133. PubMed ID: 28754100 [TBL] [Abstract][Full Text] [Related]
4. Down-regulation of acetate pathway through antisense strategy in Escherichia coli: improved foreign protein production. Kim JY; Cha HJ Biotechnol Bioeng; 2003 Sep; 83(7):841-53. PubMed ID: 12889024 [TBL] [Abstract][Full Text] [Related]
5. Multiplex iterative plasmid engineering for combinatorial optimization of metabolic pathways and diversification of protein coding sequences. Li Y; Gu Q; Lin Z; Wang Z; Chen T; Zhao X ACS Synth Biol; 2013 Nov; 2(11):651-61. PubMed ID: 24041030 [TBL] [Abstract][Full Text] [Related]
6. Bacteriophage Inspired Growth-Decoupled Recombinant Protein Production in Stargardt P; Feuchtenhofer L; Cserjan-Puschmann M; Striedner G; Mairhofer J ACS Synth Biol; 2020 Jun; 9(6):1336-1348. PubMed ID: 32324989 [TBL] [Abstract][Full Text] [Related]
7. High-yield export of a native heterologous protein to the periplasm by the tat translocation pathway in Escherichia coli. Matos CF; Branston SD; Albiniak A; Dhanoya A; Freedman RB; Keshavarz-Moore E; Robinson C Biotechnol Bioeng; 2012 Oct; 109(10):2533-42. PubMed ID: 22539025 [TBL] [Abstract][Full Text] [Related]
8. A Modular Genetic System for High-Throughput Profiling and Engineering of Multi-Target Small RNAs. Stimple SD; Lahiry A; Taris JE; Wood DW; Lease RA Methods Mol Biol; 2018; 1737():373-391. PubMed ID: 29484604 [TBL] [Abstract][Full Text] [Related]
9. LuxS coexpression enhances yields of recombinant proteins in Escherichia coli in part through posttranscriptional control of GroEL. Tsao CY; Wang L; Hashimoto Y; Yi H; March JC; DeLisa MP; Wood TK; Valdes JJ; Bentley WE Appl Environ Microbiol; 2011 Mar; 77(6):2141-52. PubMed ID: 21278275 [TBL] [Abstract][Full Text] [Related]
10. Roles and applications of small heat shock proteins in the production of recombinant proteins in Escherichia coli. Han MJ; Park SJ; Park TJ; Lee SY Biotechnol Bioeng; 2004 Nov; 88(4):426-36. PubMed ID: 15382106 [TBL] [Abstract][Full Text] [Related]
11. Omics-guided bacterial engineering of Escherichia coli ER2566 for recombinant protein expression. Zhou L; Ma Y; Wang K; Chen T; Huang Y; Liu L; Li Y; Sun J; Hu Y; Li T; Kong Z; Wang Y; Zheng Q; Zhao Q; Zhang J; Gu Y; Yu H; Xia N; Li S Appl Microbiol Biotechnol; 2023 Feb; 107(2-3):853-865. PubMed ID: 36539564 [TBL] [Abstract][Full Text] [Related]
12. Construction and characterization of broad-host-range reporter plasmid suitable for on-line analysis of bacterial host responses related to recombinant protein production. Gawin A; Peebo K; Hans S; Ertesvåg H; Irla M; Neubauer P; Brautaset T Microb Cell Fact; 2019 May; 18(1):80. PubMed ID: 31064376 [TBL] [Abstract][Full Text] [Related]
13. Inverse metabolic engineering to improve Escherichia coli as an N-glycosylation host. Pandhal J; Woodruff LB; Jaffe S; Desai P; Ow SY; Noirel J; Gill RT; Wright PC Biotechnol Bioeng; 2013 Sep; 110(9):2482-93. PubMed ID: 23568537 [TBL] [Abstract][Full Text] [Related]
14. The effect of heating rate on Escherichia coli metabolism, physiological stress, transcriptional response, and production of temperature-induced recombinant protein: a scale-down study. Caspeta L; Flores N; Pérez NO; Bolívar F; Ramírez OT Biotechnol Bioeng; 2009 Feb; 102(2):468-82. PubMed ID: 18767190 [TBL] [Abstract][Full Text] [Related]
16. Domain swapping reveals that the N-terminal domain of the sensor kinase KdpD in Escherichia coli is important for signaling. Heermann R; Lippert ML; Jung K BMC Microbiol; 2009 Jul; 9():133. PubMed ID: 19589130 [TBL] [Abstract][Full Text] [Related]
17. An amphiphilic region in the cytoplasmic domain of KdpD is recognized by the signal recognition particle and targeted to the Escherichia coli membrane. Maier KS; Hubich S; Liebhart H; Krauss S; Kuhn A; Facey SJ Mol Microbiol; 2008 Jun; 68(6):1471-84. PubMed ID: 18433452 [TBL] [Abstract][Full Text] [Related]
18. Reductive modification of genetically encoded 3-nitrotyrosine sites in alpha synuclein expressed in E.coli. Gerding HR; Karreman C; Daiber A; Delp J; Hammler D; Mex M; Schildknecht S; Leist M Redox Biol; 2019 Sep; 26():101251. PubMed ID: 31226647 [TBL] [Abstract][Full Text] [Related]
19. Genome engineering for improved recombinant protein expression in Escherichia coli. Mahalik S; Sharma AK; Mukherjee KJ Microb Cell Fact; 2014 Dec; 13():177. PubMed ID: 25523647 [TBL] [Abstract][Full Text] [Related]
20. mRNA Engineering for the Efficient Chaperone-Mediated Co-Translational Folding of Recombinant Proteins in Bui LM; Geraldi A; Nguyen TT; Lee JH; Lee JY; Cho BK; Kim SC Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31261687 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]