These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 2275963)

  • 1. Imaging the membrane protein bacteriorhodopsin with the atomic force microscope.
    Butt HJ; Downing KH; Hansma PK
    Biophys J; 1990 Dec; 58(6):1473-80. PubMed ID: 2275963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy.
    Müller DJ; Schabert FA; Büldt G; Engel A
    Biophys J; 1995 May; 68(5):1681-6. PubMed ID: 7612811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic force microscopy of purple membranes.
    Worcester DL; Miller RG; Bryant PJ
    J Microsc; 1988 Dec; 152(Pt 3):817-21. PubMed ID: 3255002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force-induced conformational change of bacteriorhodopsin.
    Müller DJ; Büldt G; Engel A
    J Mol Biol; 1995 Jun; 249(2):239-43. PubMed ID: 7783190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of bacteriorhodopsin in solid-supported purple membranes studied with tapping-mode atomic force microscopy.
    Schranz M; Baumann RP; Rhinow D; Hampp N
    J Phys Chem B; 2010 Jul; 114(27):9047-53. PubMed ID: 20509702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging of reconstituted purple membranes by atomic force microscopy.
    Kim DT; Blanch HW; Radke CJ
    Colloids Surf B Biointerfaces; 2005 Apr; 41(4):263-76. PubMed ID: 15748822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immuno-atomic force microscopy of purple membrane.
    Müller DJ; Schoenenberger CA; Büldt G; Engel A
    Biophys J; 1996 Apr; 70(4):1796-802. PubMed ID: 8785339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane.
    Müller DJ; Sass HJ; Müller SA; Büldt G; Engel A
    J Mol Biol; 1999 Feb; 285(5):1903-9. PubMed ID: 9925773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of the two-dimensional lattice of bacteriorhodopsin reconstituted in partially fluorinated phosphatidylcholine bilayers.
    Takahashi H; Yoshino M; Morita K; Takagi T; Yokoyama Y; Kikukawa T; Amii H; Kanamori T; Sonoyama M
    Biochim Biophys Acta Biomembr; 2019 Mar; 1861(3):631-642. PubMed ID: 30582916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glass is a Viable Substrate for Precision Force Microscopy of Membrane Proteins.
    Chada N; Sigdel KP; Gari RR; Matin TR; Randall LL; King GM
    Sci Rep; 2015 Jul; 5():12550. PubMed ID: 26228793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocurrents generated by bacteriorhodopsin adsorbed on nano-black lipid membranes.
    Horn C; Steinem C
    Biophys J; 2005 Aug; 89(2):1046-54. PubMed ID: 15908580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic force microscopy of native purple membrane.
    Müller DJ; Heymann JB; Oesterhelt F; Möller C; Gaub H; Büldt G; Engel A
    Biochim Biophys Acta; 2000 Aug; 1460(1):27-38. PubMed ID: 10984588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible loss of crystallinity on photobleaching purple membrane in the presence of hydroxylamine.
    Möller C; Büldt G; Dencher NA; Engel A; Müller DJ
    J Mol Biol; 2000 Aug; 301(4):869-79. PubMed ID: 10966792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of trimer-trimer interaction of bacteriorhodopsin studied by optical spectroscopy and high-speed atomic force microscopy.
    Yamashita H; Inoue K; Shibata M; Uchihashi T; Sasaki J; Kandori H; Ando T
    J Struct Biol; 2013 Oct; 184(1):2-11. PubMed ID: 23462099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct observation of different surface structures on high-resolution images of native halorhodopsin.
    Persike N; Pfeiffer M; Guckenberger R; Radmacher M; Fritz M
    J Mol Biol; 2001 Jul; 310(4):773-80. PubMed ID: 11453686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmembranous incorporation of photoelectrically active bacteriorhodopsin in planar lipid bilayers.
    Bamberg E; Dencher NA; Fahr A; Heyn MP
    Proc Natl Acad Sci U S A; 1981 Dec; 78(12):7502-6. PubMed ID: 6278476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin.
    Shibata M; Yamashita H; Uchihashi T; Kandori H; Ando T
    Nat Nanotechnol; 2010 Mar; 5(3):208-12. PubMed ID: 20154686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-molecule force spectroscopy from nanodiscs: an assay to quantify folding, stability, and interactions of native membrane proteins.
    Zocher M; Roos C; Wegmann S; Bosshart PD; Dötsch V; Bernhard F; Müller DJ
    ACS Nano; 2012 Jan; 6(1):961-71. PubMed ID: 22196235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered-membranes: a novel concept for clustering of native lipid bilayers.
    Patchornik G; Namboothiri IN; Nair DK; Wachtel E; Cohen SR; Friedman N; Sheves M
    J Colloid Interface Sci; 2012 Dec; 388(1):300-5. PubMed ID: 22999464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyhedral assembly of a membrane protein in its three-dimensional crystal.
    Kouyama T; Yamamoto M; Kamiya N; Iwasaki H; Ueki T; Sakurai I
    J Mol Biol; 1994 Mar; 236(4):990-4. PubMed ID: 8120907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.