BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 22759635)

  • 1. A Src family kinase-Shp2 axis controls RUNX1 activity in megakaryocyte and T-lymphocyte differentiation.
    Huang H; Woo AJ; Waldon Z; Schindler Y; Moran TB; Zhu HH; Feng GS; Steen H; Cantor AB
    Genes Dev; 2012 Jul; 26(14):1587-601. PubMed ID: 22759635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tyrosyl phosphorylation toggles a Runx1 switch.
    Neel BG; Speck NA
    Genes Dev; 2012 Jul; 26(14):1520-6. PubMed ID: 22802526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nonreceptor tyrosine kinase c-Abl phosphorylates Runx1 and regulates Runx1-mediated megakaryocyte maturation.
    Liu H; Cui Y; Wang GF; Dong Q; Yao Y; Li P; Cao C; Liu X
    Biochim Biophys Acta Mol Cell Res; 2018 Aug; 1865(8):1060-1072. PubMed ID: 29730354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PSTPIP2 dysregulation contributes to aberrant terminal differentiation in GATA-1-deficient megakaryocytes by activating LYN.
    Liu L; Wen Q; Gong R; Gilles L; Stankiewicz MJ; Li W; Guo M; Li L; Sun X; Li W; Crispino JD; Huang Z
    Cell Death Dis; 2014 Jan; 5(1):e988. PubMed ID: 24407241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A critical role of RUNX1 in governing megakaryocyte-primed hematopoietic stem cell differentiation.
    Wang C; Tu Z; Cai X; Wang W; Davis AK; Nattamai K; Paranjpe A; Dexheimer P; Wu J; Huang FL; Geiger H; Huang G; Zheng Y
    Blood Adv; 2023 Jun; 7(11):2590-2605. PubMed ID: 36661340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EGFR-activated Src family kinases maintain GAB1-SHP2 complexes distal from EGFR.
    Furcht CM; Buonato JM; Lazzara MJ
    Sci Signal; 2015 May; 8(376):ra46. PubMed ID: 25969544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Megakaryocytic programming by a transcriptional regulatory loop: A circle connecting RUNX1, GATA-1, and P-TEFb.
    Goldfarb AN
    J Cell Biochem; 2009 Jun; 107(3):377-82. PubMed ID: 19350569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The human SWI/SNF complex associates with RUNX1 to control transcription of hematopoietic target genes.
    Bakshi R; Hassan MQ; Pratap J; Lian JB; Montecino MA; van Wijnen AJ; Stein JL; Imbalzano AN; Stein GS
    J Cell Physiol; 2010 Nov; 225(2):569-76. PubMed ID: 20506188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RUNX1 and TGF-β signaling cross talk regulates Ca
    Raghuwanshi S; Dahariya S; Sharma DS; Kovuru N; Sahu I; Gutti RK
    FEBS J; 2020 Dec; 287(24):5411-5438. PubMed ID: 32281291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of endoglin overexpression during embryoid body development.
    Baik J; Borges L; Magli A; Thatava T; Perlingeiro RC
    Exp Hematol; 2012 Oct; 40(10):837-46. PubMed ID: 22728030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Runx1 Phosphorylation by Src Increases Trans-activation via Augmented Stability, Reduced Histone Deacetylase (HDAC) Binding, and Increased DNA Affinity, and Activated Runx1 Favors Granulopoiesis.
    Leong WY; Guo H; Ma O; Huang H; Cantor AB; Friedman AD
    J Biol Chem; 2016 Jan; 291(2):826-36. PubMed ID: 26598521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human
    Li Y; Jin C; Bai H; Gao Y; Sun S; Chen L; Qin L; Liu PP; Cheng L; Wang QF
    Blood; 2018 Jan; 131(2):191-201. PubMed ID: 29101237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RUNX1 represses the erythroid gene expression program during megakaryocytic differentiation.
    Kuvardina ON; Herglotz J; Kolodziej S; Kohrs N; Herkt S; Wojcik B; Oellerich T; Corso J; Behrens K; Kumar A; Hussong H; Urlaub H; Koch J; Serve H; Bonig H; Stocking C; Rieger MA; Lausen J
    Blood; 2015 Jun; 125(23):3570-9. PubMed ID: 25911237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis.
    Ichikawa M; Asai T; Saito T; Seo S; Yamazaki I; Yamagata T; Mitani K; Chiba S; Ogawa S; Kurokawa M; Hirai H
    Nat Med; 2004 Mar; 10(3):299-304. PubMed ID: 14966519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic evidence of PEBP2beta-independent activation of Runx1 in the murine embryo.
    Yokomizo T; Yanagida M; Huang G; Osato M; Honda C; Ema M; Takahashi S; Yamamoto M; Ito Y
    Int J Hematol; 2008 Sep; 88(2):134-138. PubMed ID: 18594778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation.
    Elagib KE; Racke FK; Mogass M; Khetawat R; Delehanty LL; Goldfarb AN
    Blood; 2003 Jun; 101(11):4333-41. PubMed ID: 12576332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear Shp2 directs normal embryo implantation via facilitating the ERα tyrosine phosphorylation by the Src kinase.
    Ran H; Kong S; Zhang S; Cheng J; Zhou C; He B; Xin Q; Lydon JP; DeMayo FJ; Feng GS; Xia G; Lu Z; Wang C; Wang H
    Proc Natl Acad Sci U S A; 2017 May; 114(18):4816-4821. PubMed ID: 28424251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of RUNX1 transcriptional function by GATA-1.
    Elagib KE; Goldfarb AN
    Crit Rev Eukaryot Gene Expr; 2007; 17(4):271-80. PubMed ID: 17725493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation-dependent interactions between RUNX-1 and FLI-1 during megakaryocyte development.
    Huang H; Yu M; Akie TE; Moran TB; Woo AJ; Tu N; Waldon Z; Lin YY; Steen H; Cantor AB
    Mol Cell Biol; 2009 Aug; 29(15):4103-15. PubMed ID: 19470763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel function of PITH domain-containing 1 as an activator of internal ribosomal entry site to enhance RUNX1 expression and promote megakaryocyte differentiation.
    Lu B; Sun X; Chen Y; Jin Q; Liang Q; Liu S; Li Y; Zhou Y; Li W; Huang Z
    Cell Mol Life Sci; 2015 Feb; 72(4):821-32. PubMed ID: 25134913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.