These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 22759671)

  • 1. Development of the lip and palate: FGF signalling.
    Stanier P; Pauws E
    Front Oral Biol; 2012; 16():71-80. PubMed ID: 22759671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FGF signalling and SUMO modification: new players in the aetiology of cleft lip and/or palate.
    Pauws E; Stanier P
    Trends Genet; 2007 Dec; 23(12):631-40. PubMed ID: 17981355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward pathogenesis of Apert cleft palate: FGF, FGFR, and TGF beta genes are differentially expressed in sequential stages of human palatal shelf fusion.
    Britto JA; Evans RD; Hayward RD; Jones BM
    Cleft Palate Craniofac J; 2002 May; 39(3):332-40. PubMed ID: 12019011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The etiopathogenesis of cleft lip and cleft palate: usefulness and caveats of mouse models.
    Gritli-Linde A
    Curr Top Dev Biol; 2008; 84():37-138. PubMed ID: 19186243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FGF signalling in craniofacial development and developmental disorders.
    Nie X; Luukko K; Kettunen P
    Oral Dis; 2006 Mar; 12(2):102-11. PubMed ID: 16476029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wnt signaling in lip and palate development.
    He F; Chen Y
    Front Oral Biol; 2012; 16():81-90. PubMed ID: 22759672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Type 1 fibroblast growth factor receptor in cranial neural crest cell-derived mesenchyme is required for palatogenesis.
    Wang C; Chang JY; Yang C; Huang Y; Liu J; You P; McKeehan WL; Wang F; Li X
    J Biol Chem; 2013 Jul; 288(30):22174-83. PubMed ID: 23754280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of Fgf signalling pathway related genes during palatal rugae development in the mouse.
    Porntaveetus T; Oommen S; Sharpe PT; Ohazama A
    Gene Expr Patterns; 2010 Jun; 10(4-5):193-8. PubMed ID: 20348033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects.
    Ito Y; Yeo JY; Chytil A; Han J; Bringas P; Nakajima A; Shuler CF; Moses HL; Chai Y
    Development; 2003 Nov; 130(21):5269-80. PubMed ID: 12975342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct functions for Bmp signaling in lip and palate fusion in mice.
    Liu W; Sun X; Braut A; Mishina Y; Behringer RR; Mina M; Martin JF
    Development; 2005 Mar; 132(6):1453-61. PubMed ID: 15716346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mouse as a developmental model for cleft lip and palate research.
    Gritli-Linde A
    Front Oral Biol; 2012; 16():32-51. PubMed ID: 22759668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PDGFR-alpha signaling is critical for tooth cusp and palate morphogenesis.
    Xu X; Bringas P; Soriano P; Chai Y
    Dev Dyn; 2005 Jan; 232(1):75-84. PubMed ID: 15543606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of BMP signaling pathway in lip and palate development.
    Parada C; Chai Y
    Front Oral Biol; 2012; 16():60-70. PubMed ID: 22759670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of external genitalia development by concerted actions of FGF ligands and FGF receptors.
    Satoh Y; Haraguchi R; Wright TJ; Mansour SL; Partanen J; Hajihosseini MK; Eswarakumar VP; Lonai P; Yamada G
    Anat Embryol (Berl); 2004 Sep; 208(6):479-86. PubMed ID: 15340846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fibroblast growth factors lead to increased Msx2 expression and fusion in calvarial sutures.
    Ignelzi MA; Wang W; Young AT
    J Bone Miner Res; 2003 Apr; 18(4):751-9. PubMed ID: 12674336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular matrix and growth factors in the pathogenesis of some craniofacial malformations.
    Carinci P; Becchetti E; Baroni T; Carinci F; Pezzetti F; Stabellini G; Locci P; Scapoli L; Tognon M; Volinia S; Bodo M
    Eur J Histochem; 2007; 51 Suppl 1():105-15. PubMed ID: 17703601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Embryology and epidemiology of cleft lip and palate.
    Bernheim N; Georges M; Malevez C; De Mey A; Mansbach A
    B-ENT; 2006; 2 Suppl 4():11-9. PubMed ID: 17366840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate.
    Tian H; Feng J; Li J; Ho TV; Yuan Y; Liu Y; Brindopke F; Figueiredo JC; Magee W; Sanchez-Lara PA; Chai Y
    Hum Mol Genet; 2017 Mar; 26(5):860-872. PubMed ID: 28069795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responsiveness of developing dental tissues to fibroblast growth factors: expression of splicing alternatives of FGFR1, -2, -3, and of FGFR4; and stimulation of cell proliferation by FGF-2, -4, -8, and -9.
    Kettunen P; Karavanova I; Thesleff I
    Dev Genet; 1998; 22(4):374-85. PubMed ID: 9664689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence evaluation of FGF and FGFR gene conserved non-coding elements in non-syndromic cleft lip and palate cases.
    Riley BM; Murray JC
    Am J Med Genet A; 2007 Dec; 143A(24):3228-34. PubMed ID: 17963255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.