These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 2275975)

  • 1. Randomness in the heparin polymer: computer simulations of alternative action patterns of heparin lyase.
    Cohen DM; Linhardt RJ
    Biopolymers; 1990; 30(7-8):733-41. PubMed ID: 2275975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate specificity of the heparin lyases from Flavobacterium heparinum.
    Desai UR; Wang HM; Linhardt RJ
    Arch Biochem Biophys; 1993 Nov; 306(2):461-8. PubMed ID: 8215450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonrandom structural features in the heparin polymer.
    Linhardt RJ; Cohen DM; Rice KG
    Biochemistry; 1989 Apr; 28(7):2888-94. PubMed ID: 2742816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specificity studies on the heparin lyases from Flavobacterium heparinum.
    Desai UR; Wang HM; Linhardt RJ
    Biochemistry; 1993 Aug; 32(32):8140-5. PubMed ID: 8347612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative susceptibilities of the glucosamine-glucuronic acid and N-acetylglucosamine-glucuronic acid linkages to heparin lyase III.
    Chai W; Leteux C; Westling C; Lindahl U; Feizi T
    Biochemistry; 2004 Jul; 43(26):8590-9. PubMed ID: 15222770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of structurally defined oligosaccharide substrates of heparin and heparan monosulfate lyases.
    Rice KG; Linhardt RJ
    Carbohydr Res; 1989 Jul; 190(2):219-33. PubMed ID: 2805009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of random structural features in the heparin polymer.
    Linhardt RJ; Merchant ZM; Rice KG; Kim YS; Fitzgerald GL; Grant AC; Langer R
    Biochemistry; 1985 Dec; 24(26):7805-10. PubMed ID: 4092040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct evidence for a predominantly exolytic processive mechanism for depolymerization of heparin-like glycosaminoglycans by heparinase I.
    Ernst S; Rhomberg AJ; Biemann K; Sasisekharan R
    Proc Natl Acad Sci U S A; 1998 Apr; 95(8):4182-7. PubMed ID: 9539710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural studies on the tri- and tetrasaccharides isolated from porcine intestinal heparin and characterization of heparinase/heparitinases using them as substrates.
    Yamada S; Sakamoto K; Tsuda H; Yoshida K; Sugahara K; Khoo KH; Morris HR; Dell A
    Glycobiology; 1994 Feb; 4(1):69-78. PubMed ID: 8186552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-function relations of antithrombin III-heparin interactions as assessed by biophysical and biological assays and molecular modeling of peptide-pentasaccharide-docked complexes.
    Tyler-Cross R; Sobel M; McAdory LE; Harris RB
    Arch Biochem Biophys; 1996 Oct; 334(2):206-13. PubMed ID: 8900394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examination of the substrate specificity of heparin and heparan sulfate lyases.
    Linhardt RJ; Turnbull JE; Wang HM; Loganathan D; Gallagher JT
    Biochemistry; 1990 Mar; 29(10):2611-7. PubMed ID: 2334685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel oligoalginate lyase from abalone, Haliotis discus hannai, that releases disaccharide from alginate polymer in an exolytic manner.
    Suzuki H; Suzuki K; Inoue A; Ojima T
    Carbohydr Res; 2006 Aug; 341(11):1809-19. PubMed ID: 16697989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Search for the heparin antithrombin III-binding site precursor.
    Linhardt RJ; Wang HM; Loganathan D; Bae JH
    J Biol Chem; 1992 Feb; 267(4):2380-7. PubMed ID: 1733939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploration of the action pattern of Streptomyces hyaluronate lyase using high-resolution capillary electrophoresis.
    Park Y; Cho S; Linhardt RJ
    Biochim Biophys Acta; 1997 Feb; 1337(2):217-26. PubMed ID: 9048898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable production of low molecular weight heparins by combinations of heparinase I/II/III.
    Wu J; Zhang C; Mei X; Li Y; Xing XH
    Carbohydr Polym; 2014 Jan; 101():484-92. PubMed ID: 24299802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depiction of the forces participating in the 2-O-sulfo-alpha-L-iduronic acid conformational preference in heparin sequences in aqueous solutions.
    Pol-Fachin L; Verli H
    Carbohydr Res; 2008 Jul; 343(9):1435-45. PubMed ID: 18452898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative analysis of the primary sequences and characteristics of heparinases I, II, and III from Flavobacterium heparinum.
    Godavarti R; Sasisekharan R
    Biochem Biophys Res Commun; 1996 Dec; 229(3):770-7. PubMed ID: 8954971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cleavage of the antithrombin III binding site in heparin by heparinases and its implication in the generation of low molecular weight heparin.
    Shriver Z; Sundaram M; Venkataraman G; Fareed J; Linhardt R; Biemann K; Sasisekharan R
    Proc Natl Acad Sci U S A; 2000 Sep; 97(19):10365-70. PubMed ID: 10984532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational structure of some trimeric and pentameric structural units of heparin.
    Remko M; von der Lieth CW
    J Phys Chem A; 2007 Dec; 111(51):13484-91. PubMed ID: 18052350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatographic analysis and sequencing approach of heparin oligosaccharides using cetyltrimethylammonium dynamically coated stationary phases.
    Mourier PA; Viskov C
    Anal Biochem; 2004 Sep; 332(2):299-313. PubMed ID: 15325299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.