These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 22760318)
1. Using chemical shifts to assess transient secondary structure and generate ensemble structures of intrinsically disordered proteins. Kashtanov S; Borcherds W; Wu H; Daughdrill GW; Ytreberg FM Methods Mol Biol; 2012; 895():139-52. PubMed ID: 22760318 [TBL] [Abstract][Full Text] [Related]
2. Structural divergence is more extensive than sequence divergence for a family of intrinsically disordered proteins. Borcherds W; Kashtanov S; Wu H; Daughdrill GW Proteins; 2013 Oct; 81(10):1686-98. PubMed ID: 23606624 [TBL] [Abstract][Full Text] [Related]
3. DANGLE: A Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure. Cheung MS; Maguire ML; Stevens TJ; Broadhurst RW J Magn Reson; 2010 Feb; 202(2):223-33. PubMed ID: 20015671 [TBL] [Abstract][Full Text] [Related]
4. New force field on modeling intrinsically disordered proteins. Wang W; Ye W; Jiang C; Luo R; Chen HF Chem Biol Drug Des; 2014 Sep; 84(3):253-69. PubMed ID: 24589355 [TBL] [Abstract][Full Text] [Related]
5. Conformational propensities of intrinsically disordered proteins from NMR chemical shifts. Kragelj J; Ozenne V; Blackledge M; Jensen MR Chemphyschem; 2013 Sep; 14(13):3034-45. PubMed ID: 23794453 [TBL] [Abstract][Full Text] [Related]
6. Improved validation of IDP ensembles by one-bond Cα-Hα scalar couplings. Gapsys V; Narayanan RL; Xiang S; de Groot BL; Zweckstetter M J Biomol NMR; 2015 Nov; 63(3):299-307. PubMed ID: 26433382 [TBL] [Abstract][Full Text] [Related]
7. Defining conformational ensembles of intrinsically disordered and partially folded proteins directly from chemical shifts. Jensen MR; Salmon L; Nodet G; Blackledge M J Am Chem Soc; 2010 Feb; 132(4):1270-2. PubMed ID: 20063887 [TBL] [Abstract][Full Text] [Related]
8. Sequence-specific random coil chemical shifts of intrinsically disordered proteins. Tamiola K; Acar B; Mulder FA J Am Chem Soc; 2010 Dec; 132(51):18000-3. PubMed ID: 21128621 [TBL] [Abstract][Full Text] [Related]
9. Modeling protein conformational ensembles: from missing loops to equilibrium fluctuations. Shehu A; Clementi C; Kavraki LE Proteins; 2006 Oct; 65(1):164-79. PubMed ID: 16917941 [TBL] [Abstract][Full Text] [Related]
10. Detection of initiation sites in protein folding of the four helix bundle ACBP by chemical shift analysis. Modig K; Jürgensen VW; Lindorff-Larsen K; Fieber W; Bohr HG; Poulsen FM FEBS Lett; 2007 Oct; 581(25):4965-71. PubMed ID: 17910956 [TBL] [Abstract][Full Text] [Related]
11. Comparison between the phi distribution of the amino acids in the protein database and NMR data indicates that amino acids have various phi propensities in the random coil conformation. Serrano L J Mol Biol; 1995 Nov; 254(2):322-33. PubMed ID: 7490751 [TBL] [Abstract][Full Text] [Related]
13. Effects of amino acid phi,psi propensities and secondary structure interactions in modulating H alpha chemical shifts in peptide and protein beta-sheet. Sharman GJ; Griffiths-Jones SR; Jourdan M; Searle MS J Am Chem Soc; 2001 Dec; 123(49):12318-24. PubMed ID: 11734033 [TBL] [Abstract][Full Text] [Related]
14. Structure determination of a peptide model of the repeated helical domain in Samia cynthia ricini silk fibroin before spinning by a combination of advanced solid-state NMR methods. Nakazawa Y; Asakura T J Am Chem Soc; 2003 Jun; 125(24):7230-7. PubMed ID: 12797796 [TBL] [Abstract][Full Text] [Related]
15. [A turning point in the knowledge of the structure-function-activity relations of elastin]. Alix AJ J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705 [TBL] [Abstract][Full Text] [Related]
16. Solvent-exposed residues located in the beta-sheet modulate the stability of the tetramerization domain of p53--a structural and combinatorial approach. Mora P; Carbajo RJ; Pineda-Lucena A; Sánchez del Pino MM; Pérez-Payá E Proteins; 2008 Jun; 71(4):1670-85. PubMed ID: 18076077 [TBL] [Abstract][Full Text] [Related]
17. Toward direct determination of conformations of protein building units from multidimensional NMR experiments VI: chemical shift analysis of his to gain 3D structure and protonation state information. Hudáky P; Perczel A J Comput Chem; 2005 Oct; 26(13):1307-17. PubMed ID: 15999335 [TBL] [Abstract][Full Text] [Related]
18. Using NMR Chemical Shifts to Determine Residue-Specific Secondary Structure Populations for Intrinsically Disordered Proteins. Borcherds WM; Daughdrill GW Methods Enzymol; 2018; 611():101-136. PubMed ID: 30471686 [TBL] [Abstract][Full Text] [Related]
19. Quantitative determination of the conformational properties of partially folded and intrinsically disordered proteins using NMR dipolar couplings. Jensen MR; Markwick PR; Meier S; Griesinger C; Zweckstetter M; Grzesiek S; Bernadó P; Blackledge M Structure; 2009 Sep; 17(9):1169-85. PubMed ID: 19748338 [TBL] [Abstract][Full Text] [Related]
20. Contact pair dynamics during folding of two small proteins: chicken villin head piece and the Alzheimer protein beta-amyloid. Mukherjee A; Bagchi B J Chem Phys; 2004 Jan; 120(3):1602-12. PubMed ID: 15268287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]