BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 22760325)

  • 1. Structure analysis of unfolded peptides I: vibrational circular dichroism spectroscopy.
    Schweitzer-Stenner R; Soffer JB; Verbaro D
    Methods Mol Biol; 2012; 895():271-313. PubMed ID: 22760325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural analysis of unfolded peptides by Raman spectroscopy.
    Schweitzer-Stenner R; Soffer JB; Toal S; Verbaro D
    Methods Mol Biol; 2012; 895():315-46. PubMed ID: 22760326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulated IR, isotropic and anisotropic Raman, and vibrational circular dichroism amide I band profiles of stacked β-sheets.
    Schweitzer-Stenner R
    J Phys Chem B; 2012 Apr; 116(14):4141-53. PubMed ID: 22390232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The conformation of tetraalanine in water determined by polarized Raman, FT-IR, and VCD spectroscopy.
    Schweitzer-Stenner R; Eker F; Griebenow K; Cao X; Nafie LA
    J Am Chem Soc; 2004 Mar; 126(9):2768-76. PubMed ID: 14995194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictions of secondary structure using statistical analyses of electronic and vibrational circular dichroism and Fourier transform infrared spectra of proteins in H2O.
    Baumruk V; Pancoska P; Keiderling TA
    J Mol Biol; 1996 Jun; 259(4):774-91. PubMed ID: 8683582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared and mid-infrared Fourier transform vibrational circular dichroism of proteins in aqueous solution.
    Ma S; Freedman TB; Dukor RK; Nafie LA
    Appl Spectrosc; 2010 Jun; 64(6):615-26. PubMed ID: 20537229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tripeptides with ionizable side chains adopt a perturbed polyproline II structure in water.
    Eker F; Griebenow K; Cao X; Nafie LA; Schweitzer-Stenner R
    Biochemistry; 2004 Jan; 43(3):613-21. PubMed ID: 14730965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic characterization of selected beta- sheet hairpin models.
    Hilario J; Kubelka J; Syud FA; Gellman SH; Keiderling TA
    Biopolymers; 2002; 67(4-5):233-6. PubMed ID: 12012436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared, vibrational circular dichroism, and Raman spectral simulations for β-sheet structures with various isotopic labels, interstrand, and stacking arrangements using density functional theory.
    Welch WR; Kubelka J; Keiderling TA
    J Phys Chem B; 2013 Sep; 117(36):10343-58. PubMed ID: 23924300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared and vibrational CD spectra of partially solvated alpha-helices: DFT-based simulations with explicit solvent.
    Turner DR; Kubelka J
    J Phys Chem B; 2007 Feb; 111(7):1834-45. PubMed ID: 17256894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct calculations of vibrational absorption and circular dichroism spectra of alanine dipeptide analog in water: quantum mechanical/molecular mechanical molecular dynamics simulations.
    Yang S; Cho M
    J Chem Phys; 2009 Oct; 131(13):135102. PubMed ID: 19814574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvent effects on IR and VCD spectra of helical peptides: DFT-based static spectral simulations with explicit water.
    Kubelka J; Huang R; Keiderling TA
    J Phys Chem B; 2005 Apr; 109(16):8231-43. PubMed ID: 16851962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circular dichroism techniques for the analysis of intrinsically disordered proteins and domains.
    Chemes LB; Alonso LG; Noval MG; de Prat-Gay G
    Methods Mol Biol; 2012; 895():387-404. PubMed ID: 22760329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrational circular dichroism as a probe of fibrillogenesis: the origin of the anomalous intensity enhancement of amyloid-like fibrils.
    Measey TJ; Schweitzer-Stenner R
    J Am Chem Soc; 2011 Feb; 133(4):1066-76. PubMed ID: 21186804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural analyses of experimental 13C edited amide I' IR and VCD for peptide β-sheet aggregates and fibrils using DFT-based spectral simulations.
    Welch WR; Keiderling TA; Kubelka J
    J Phys Chem B; 2013 Sep; 117(36):10359-69. PubMed ID: 23924239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation effect on the GSSS peptide conformation in water: infrared, vibrational circular dichroism, and circular dichroism experiments and comparisons with molecular dynamics simulations.
    Lee KK; Joo C; Yang S; Han H; Cho M
    J Chem Phys; 2007 Jun; 126(23):235102. PubMed ID: 17600445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and theoretical spectroscopic study of 3(10)-helical peptides using isotopic labeling to evaluate vibrational coupling.
    Lakhani A; Roy A; De Poli M; Nakaema M; Formaggio F; Toniolo C; Keiderling TA
    J Phys Chem B; 2011 May; 115(19):6252-64. PubMed ID: 21500779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibrational circular dichroism and IR spectral analysis as a test of theoretical conformational modeling for a cyclic hexapeptide.
    Bour P; Kim J; Kapitan J; Hammer RP; Huang R; Wu L; Keiderling TA
    Chirality; 2008 Nov; 20(10):1104-19. PubMed ID: 18506832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrational spectroscopic characteristics of secondary structure polypeptides in liquid water: constrained MD simulation studies.
    Choi JH; Hahn S; Cho M
    Biopolymers; 2006 Dec; 83(5):519-36. PubMed ID: 16888772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure of tri-proline in water probed by polarized Raman, Fourier transform infrared, vibrational circular dichroism, and electric ultraviolet circular dichroism spectroscopy.
    Schweitzer-Stenner R; Eker F; Perez A; Griebenow K; Cao X; Nafie LA
    Biopolymers; 2003; 71(5):558-68. PubMed ID: 14635096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.