BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 22760449)

  • 61. Transcription of tandemly repetitive DNA: functional roles.
    Biscotti MA; Canapa A; Forconi M; Olmo E; Barucca M
    Chromosome Res; 2015 Sep; 23(3):463-77. PubMed ID: 26403245
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Heterochromatic hues of transcription-the diverse roles of noncoding transcripts from constitutive heterochromatin.
    Saha P; Mishra RK
    FEBS J; 2019 Dec; 286(23):4626-4641. PubMed ID: 31644838
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A heterochromatin barrier partitions the fission yeast centromere into discrete chromatin domains.
    Scott KC; Merrett SL; Willard HF
    Curr Biol; 2006 Jan; 16(2):119-29. PubMed ID: 16431364
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Appearance and heterochromatin localization of HP1α in early mouse embryos depends on cytoplasmic clock and H3S10 phosphorylation.
    Meglicki M; Teperek-Tkacz M; Borsuk E
    Cell Cycle; 2012 Jun; 11(11):2189-205. PubMed ID: 22622086
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases.
    Taddei A; Maison C; Roche D; Almouzni G
    Nat Cell Biol; 2001 Feb; 3(2):114-20. PubMed ID: 11175742
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Kinetochore and heterochromatin domains of the fission yeast centromere.
    Pidoux AL; Allshire RC
    Chromosome Res; 2004; 12(6):521-34. PubMed ID: 15289660
    [TBL] [Abstract][Full Text] [Related]  

  • 67. RNA interference (RNAi)-dependent and RNAi-independent association of the Chp1 chromodomain protein with distinct heterochromatic loci in fission yeast.
    Petrie VJ; Wuitschick JD; Givens CD; Kosinski AM; Partridge JF
    Mol Cell Biol; 2005 Mar; 25(6):2331-46. PubMed ID: 15743828
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Centromere Transcription: Means and Motive.
    Duda Z; Trusiak S; O'Neill R
    Prog Mol Subcell Biol; 2017; 56():257-281. PubMed ID: 28840241
    [TBL] [Abstract][Full Text] [Related]  

  • 69. RNAi-mediated chromatin silencing in fission yeast.
    White SA; Allshire RC
    Curr Top Microbiol Immunol; 2008; 320():157-83. PubMed ID: 18268844
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Elimination of a specific histone H3K14 acetyltransferase complex bypasses the RNAi pathway to regulate pericentric heterochromatin functions.
    Reddy BD; Wang Y; Niu L; Higuchi EC; Marguerat SB; Bähler J; Smith GR; Jia S
    Genes Dev; 2011 Feb; 25(3):214-9. PubMed ID: 21289066
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Constitutive heterochromatin during mouse oogenesis: the pattern of histone H3 modifications and localization of HP1alpha and HP1beta proteins.
    Meglicki M; Zientarski M; Borsuk E
    Mol Reprod Dev; 2008 Feb; 75(2):414-28. PubMed ID: 17891782
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Meiotic events at the centromeric heterochromatin: histone H3 phosphorylation, topoisomerase II alpha localization and chromosome condensation.
    Cobb J; Miyaike M; Kikuchi A; Handel MA
    Chromosoma; 1999 Dec; 108(7):412-25. PubMed ID: 10654080
    [TBL] [Abstract][Full Text] [Related]  

  • 73. ATRX contributes to epigenetic asymmetry and silencing of major satellite transcripts in the maternal genome of the mouse embryo.
    De La Fuente R; Baumann C; Viveiros MM
    Development; 2015 May; 142(10):1806-17. PubMed ID: 25926359
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Cancer-associated alteration of pericentromeric heterochromatin may contribute to chromosome instability.
    Slee RB; Steiner CM; Herbert BS; Vance GH; Hickey RJ; Schwarz T; Christan S; Radovich M; Schneider BP; Schindelhauer D; Grimes BR
    Oncogene; 2012 Jul; 31(27):3244-53. PubMed ID: 22081068
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The INO80 Complex Regulates Epigenetic Inheritance of Heterochromatin.
    Shan CM; Bao K; Diedrich J; Chen X; Lu C; Yates JR; Jia S
    Cell Rep; 2020 Dec; 33(13):108561. PubMed ID: 33378674
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Chromatin proteins are determinants of centromere function.
    Sharp JA; Kaufman PD
    Curr Top Microbiol Immunol; 2003; 274():23-52. PubMed ID: 12596903
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A Novel Epigenetic Silencing Pathway Involving the Highly Conserved 5'-3' Exoribonuclease Dhp1/Rat1/Xrn2 in Schizosaccharomyces pombe.
    Tucker JF; Ohle C; Schermann G; Bendrin K; Zhang W; Fischer T; Zhang K
    PLoS Genet; 2016 Feb; 12(2):e1005873. PubMed ID: 26889830
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Strong epigenetic similarity between maize centromeric and pericentromeric regions at the level of small RNAs, DNA methylation and H3 chromatin modifications.
    Gent JI; Dong Y; Jiang J; Dawe RK
    Nucleic Acids Res; 2012 Feb; 40(4):1550-60. PubMed ID: 22058126
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Heterochromatin boundaries are hotspots for de novo kinetochore formation.
    Olszak AM; van Essen D; Pereira AJ; Diehl S; Manke T; Maiato H; Saccani S; Heun P
    Nat Cell Biol; 2011 Jun; 13(7):799-808. PubMed ID: 21685892
    [TBL] [Abstract][Full Text] [Related]  

  • 80. On the connection between RNAi and heterochromatin at centromeres.
    Lejeune E; Bayne EH; Allshire RC
    Cold Spring Harb Symp Quant Biol; 2010; 75():275-83. PubMed ID: 21289046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.