These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 22760594)

  • 21. Responses and toxin bioaccumulation in duckweed (Lemna minor) under microcystin-LR, linear alkybenzene sulfonate and their joint stress.
    Wang Z; Xiao B; Song L; Wang C; Zhang J
    J Hazard Mater; 2012 Aug; 229-230():137-44. PubMed ID: 22763229
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ecotoxicological effects of aluminum and zinc on growth and antioxidants in Lemna minor L.
    Radić S; Babić M; Skobić D; Roje V; Pevalek-Kozlina B
    Ecotoxicol Environ Saf; 2010 Mar; 73(3):336-42. PubMed ID: 19914715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioaccumulation and physiological effects of copepods sp. (Eucyclop sp.) fed Chlorella ellipsoides exposed to titanium dioxide (TiO
    Matouke MM; Mustapha M
    Aquat Toxicol; 2018 May; 198():30-39. PubMed ID: 29627101
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro toxicity evaluation of 25-nm anatase TiO2 nanoparticles in immortalized keratinocyte cells.
    Chan J; Ying T; Guang YF; Lin LX; Kai T; Fang ZY; Ting YX; Xing LF; Ji YY
    Biol Trace Elem Res; 2011 Dec; 144(1-3):183-96. PubMed ID: 21552994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinus carpio).
    Hao L; Wang Z; Xing B
    J Environ Sci (China); 2009; 21(10):1459-66. PubMed ID: 20000003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth, physiological function, and antioxidant defense system responses of Lemna minor L. to decabromodiphenyl ether (BDE-209) induced phytotoxicity.
    Sun Y; Sun P; Wang C; Liao J; Ni J; Zhang T; Wang R; Ruan H
    Plant Physiol Biochem; 2019 Jun; 139():113-120. PubMed ID: 30884414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inter- and intra-specific competition of duckweed under multiple heavy metal contaminated water.
    Zhao Z; Shi H; Kang X; Liu C; Chen L; Liang X; Jin L
    Aquat Toxicol; 2017 Nov; 192():216-223. PubMed ID: 28985588
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biochemical responses of two typical duckweeds exposed to dibutyl phthalate.
    Huang Q; Wang Q; Tan W; Song G; Lu G; Li F
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(8):1615-26. PubMed ID: 16835115
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antioxidative response of Lemna polyrrhiza L. to cadmium stress.
    John R; Ahmad P; Gadgil K; Sharma S
    J Environ Biol; 2007 Jul; 28(3):583-9. PubMed ID: 18380079
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters.
    Thwala M; Musee N; Sikhwivhilu L; Wepener V
    Environ Sci Process Impacts; 2013 Oct; 15(10):1830-43. PubMed ID: 23917884
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Imbalance between oxidative and antioxidative systems: toward an understanding of visible light-induced titanium dioxide nanoparticles toxicity.
    Zou XY; Xu B; Yu CP; Zhang HW
    Chemosphere; 2013 Nov; 93(10):2451-7. PubMed ID: 24080005
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ecophysiological tolerance of duckweeds exposed to copper.
    Kanoun-Boulé M; Vicente JA; Nabais C; Prasad MN; Freitas H
    Aquat Toxicol; 2009 Jan; 91(1):1-9. PubMed ID: 19027182
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Silicon dioxide nanoparticles adsorption alters the secondary and tertiary structures of catalase and undermines its activity.
    Li Q; Chen Z; Zhang L; Wei W; Song E; Song Y
    Environ Pollut; 2023 Jul; 328():121601. PubMed ID: 37031852
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nickel-induced changes in lipid peroxidation, antioxidative enzymes, and metal accumulation in Lemna gibba.
    Yilmaz DD; Parlak KU
    Int J Phytoremediation; 2011 Sep; 13(8):805-17. PubMed ID: 21972520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of charge and agglomeration behavior of TiO₂ nanoparticles in ecotoxicological media.
    Nur Y; Lead JR; Baalousha M
    Sci Total Environ; 2015 Dec; 535():45-53. PubMed ID: 25432129
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toxicity of ZnSe nanoparticles to Lemna minor: Evaluation of biological responses.
    Tarrahi R; Khataee A; Movafeghi A; Rezanejad F
    J Environ Manage; 2018 Nov; 226():298-307. PubMed ID: 30125809
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza.
    Jiang HS; Qiu XN; Li GB; Li W; Yin LY
    Environ Toxicol Chem; 2014 Jun; 33(6):1398-405. PubMed ID: 24619507
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Involvement of JNK and P53 activation in G2/M cell cycle arrest and apoptosis induced by titanium dioxide nanoparticles in neuron cells.
    Wu J; Sun J; Xue Y
    Toxicol Lett; 2010 Dec; 199(3):269-76. PubMed ID: 20863874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toxicity of TiO
    Sendra M; Moreno-Garrido I; Yeste MP; Gatica JM; Blasco J
    Environ Pollut; 2017 Aug; 227():39-48. PubMed ID: 28454020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Binary effect of titanium dioxide nanoparticles (nTio
    Matouke MM; Elewa DT; Abdullahi K
    Aquat Toxicol; 2018 May; 198():40-48. PubMed ID: 29501936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.