These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 22760812)

  • 1. Highly stretchable alkaline batteries based on an embedded conductive fabric.
    Gaikwad AM; Zamarayeva AM; Rousseau J; Chu H; Derin I; Steingart DA
    Adv Mater; 2012 Sep; 24(37):5071-6. PubMed ID: 22760812
    [No Abstract]   [Full Text] [Related]  

  • 2. Highly flexible, printed alkaline batteries based on mesh-embedded electrodes.
    Gaikwad AM; Whiting GL; Steingart DA; Arias AC
    Adv Mater; 2011 Aug; 23(29):3251-5. PubMed ID: 21661062
    [No Abstract]   [Full Text] [Related]  

  • 3. Co3O4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc-air batteries.
    Du G; Liu X; Zong Y; Hor TS; Yu A; Liu Z
    Nanoscale; 2013 Jun; 5(11):4657-61. PubMed ID: 23608821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous recovery of Zn and MnO2 from used batteries, as raw materials, by electrolysis.
    Buzatu M; Săceanu S; Ghica VG; Iacob G; Buzatu T
    Waste Manag; 2013 Aug; 33(8):1764-9. PubMed ID: 23731699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy storage: batteries take charge.
    Stein A
    Nat Nanotechnol; 2011 May; 6(5):262-3. PubMed ID: 21546897
    [No Abstract]   [Full Text] [Related]  

  • 6. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure.
    Yuan L; Lu XH; Xiao X; Zhai T; Dai J; Zhang F; Hu B; Wang X; Gong L; Chen J; Hu C; Tong Y; Zhou J; Wang ZL
    ACS Nano; 2012 Jan; 6(1):656-61. PubMed ID: 22182051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries.
    Zhou L; Zhao D; Lou XW
    Adv Mater; 2012 Feb; 24(6):745-8. PubMed ID: 22213232
    [No Abstract]   [Full Text] [Related]  

  • 8. Electrochemical Synthesis of Graphene/MnO2 Nano-Composite for Application to Supercapacitor Electrode.
    Jeong KH; Lee HJ; Simpson MF; Jeong M
    J Nanosci Nanotechnol; 2016 May; 16(5):4620-5. PubMed ID: 27483800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-wrapped MnO2 -graphene nanoribbons as anode materials for high-performance lithium ion batteries.
    Li L; Raji AR; Tour JM
    Adv Mater; 2013 Nov; 25(43):6298-302. PubMed ID: 23996876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries.
    Zhang G; Yu L; Wu HB; Hoster HE; Lou XW
    Adv Mater; 2012 Sep; 24(34):4609-13. PubMed ID: 22730075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reclaiming the spent alkaline zinc manganese dioxide batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi0.5Mn1.5O4 materials.
    Ma Y; Cui Y; Zuo X; Huang S; Hu K; Xiao X; Nan J
    Waste Manag; 2014 Oct; 34(10):1793-9. PubMed ID: 24906867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological and crystalline evolution of nanostructured MnO2 and its application in lithium--air batteries.
    Truong TT; Liu Y; Ren Y; Trahey L; Sun Y
    ACS Nano; 2012 Sep; 6(9):8067-77. PubMed ID: 22866870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological modification of alpha-MnO2 catalyst for use in Li/air batteries.
    Park MS; Kim JH; Kim KJ; Jeong G; Kim YJ
    J Nanosci Nanotechnol; 2013 May; 13(5):3611-6. PubMed ID: 23858913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical Role of pH Evolution of Electrolyte in the Reaction Mechanism for Rechargeable Zinc Batteries.
    Lee B; Seo HR; Lee HR; Yoon CS; Kim JH; Chung KY; Cho BW; Oh SH
    ChemSusChem; 2016 Oct; 9(20):2948-2956. PubMed ID: 27650037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coaxial carbon/metal oxide/aligned carbon nanotube arrays as high-performance anodes for lithium ion batteries.
    Lou F; Zhou H; Tran TD; Melandsø Buan ME; Vullum-Bruer F; Rønning M; Walmsley JC; Chen D
    ChemSusChem; 2014 May; 7(5):1335-46. PubMed ID: 24578068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanohorns as a high-performance carrier for MnO2 anode in lithium-ion batteries.
    Lai H; Li J; Chen Z; Huang Z
    ACS Appl Mater Interfaces; 2012 May; 4(5):2325-8. PubMed ID: 22545767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of manganese oxides from spent alkaline and zinc-carbon batteries. An application as catalysts for VOCs elimination.
    Gallegos MV; Falco LR; Peluso MA; Sambeth JE; Thomas HJ
    Waste Manag; 2013 Jun; 33(6):1483-90. PubMed ID: 23562448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired Architectures and Heteroatom Doping To Construct Metal-Oxide-Based Anode for High-Performance Lithium-Ion Batteries.
    Sun Q; Zhou L; Sun L; Wang C; Wu Y; Wang X; Wang L; Ming J
    Chemistry; 2018 Nov; 24(63):16902-16909. PubMed ID: 30204956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly conductive and stretchable silver nanowire conductors.
    Xu F; Zhu Y
    Adv Mater; 2012 Sep; 24(37):5117-22. PubMed ID: 22786752
    [No Abstract]   [Full Text] [Related]  

  • 20. An interwoven network of MnO₂ nanowires and carbon nanotubes as the anode for bendable lithium-ion batteries.
    Ee SJ; Pang H; Mani U; Yan Q; Ting SL; Chen P
    Chemphyschem; 2014 Aug; 15(12):2445-9. PubMed ID: 24888436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.