These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22760970)

  • 1. Wire metamaterials: physics and applications.
    Simovski CR; Belov PA; Atrashchenko AV; Kivshar YS
    Adv Mater; 2012 Aug; 24(31):4229-48. PubMed ID: 22760970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-frequency nonlocal and hyperbolic modes in corrugated wire metamaterials.
    Fan B; Filonov D; Ginzburg P; Podolskiy VA
    Opt Express; 2018 Jun; 26(13):17541-17548. PubMed ID: 30119565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric fishnet metamaterials with strong optical activity.
    Zhang YL; Jin W; Dong XZ; Zhao ZS; Duan XM
    Opt Express; 2012 May; 20(10):10776-87. PubMed ID: 22565701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient homogenization procedure for the calculation of optical properties of 3D nanostructured composites.
    Mochan WL; Ortiz GP; Mendoza BS
    Opt Express; 2010 Oct; 18(21):22119-27. PubMed ID: 20941113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cut-wire-pair structures as two-dimensional magnetic metamaterials.
    Powell DA; Shadrivov IV; Kivshar YS
    Opt Express; 2008 Sep; 16(19):15185-90. PubMed ID: 18795056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials.
    Liu R; Cheng Q; Chin JY; Mock JJ; Cui TJ; Smith DR
    Opt Express; 2009 Nov; 17(23):21030-41. PubMed ID: 19997341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabricating metamaterials using the fiber drawing method.
    Tuniz A; Lwin R; Argyros A; Fleming SC; Kuhlmey BT
    J Vis Exp; 2012 Oct; (68):. PubMed ID: 23117870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical magnetic plasma in artificial flowers.
    Li J; Thylen L; Bratkovsky A; Wang SY; Williams RS
    Opt Express; 2009 Jun; 17(13):10800-5. PubMed ID: 19550479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region.
    Liu Y; Bartal G; Zhang X
    Opt Express; 2008 Sep; 16(20):15439-48. PubMed ID: 18825180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of plasmonic toroidal metamaterials at optical frequencies.
    Huang YW; Chen WT; Wu PC; Fedotov V; Savinov V; Ho YZ; Chau YF; Zheludev NI; Tsai DP
    Opt Express; 2012 Jan; 20(2):1760-8. PubMed ID: 22274519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces.
    Tong L; Miljković VD; Käll M
    Nano Lett; 2010 Jan; 10(1):268-73. PubMed ID: 20030391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method to design transmission resonances through subwavelength apertures based on designed surface plasmons.
    Liu J; Ding L; Wang K; Yao J
    Opt Express; 2009 Jul; 17(15):12714-22. PubMed ID: 19654677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Customised broadband metamaterial absorbers for arbitrary polarisation.
    Wakatsuchi H; Greedy S; Christopoulos C; Paul J
    Opt Express; 2010 Oct; 18(21):22187-98. PubMed ID: 20941120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free-standing THz electromagnetic metamaterials.
    Moser HO; Kong JA; Jian LK; Chen HS; Liu G; Bahou M; Kalaiselvi SM; Maniam SM; Cheng XX; Wu BI; Gu PD; Chen A; Heussler SP; bin Mahmood S; Wen L
    Opt Express; 2008 Sep; 16(18):13773-80. PubMed ID: 18772988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrahigh-Sensitivity Molecular Sensing with Carbon Nanotube Terahertz Metamaterials.
    Wang R; Xu W; Chen D; Zhou R; Wang Q; Gao W; Kono J; Xie L; Ying Y
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40629-40634. PubMed ID: 32805801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of electromagnetically induced transparency in metamaterials.
    Xu H; Lu Y; Lee Y; Ham BS
    Opt Express; 2010 Aug; 18(17):17736-47. PubMed ID: 20721160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A level-set procedure for the design of electromagnetic metamaterials.
    Zhou S; Li W; Sun G; Li Q
    Opt Express; 2010 Mar; 18(7):6693-702. PubMed ID: 20389692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Planar wallpaper group metamaterials for novel terahertz applications.
    Bingham CM; Tao H; Liu X; Averitt RD; Zhang X; Padilla WJ
    Opt Express; 2008 Nov; 16(23):18565-75. PubMed ID: 19581942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dielectrophoretic alignment of metal and metal oxide nanowires and nanotubes: a universal set of parameters for bridging prepatterned microelectrodes.
    Maijenburg AW; Maas MG; Rodijk EJ; Ahmed W; Kooij ES; Carlen ET; Blank DH; ten Elshof JE
    J Colloid Interface Sci; 2011 Mar; 355(2):486-93. PubMed ID: 21237462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.