These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22761017)

  • 1. Printable giant magnetoresistive devices.
    Karnaushenko D; Makarov D; Yan C; Streubel R; Schmidt OG
    Adv Mater; 2012 Aug; 24(33):4518-22. PubMed ID: 22761017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Geometrical Overlap between Giant Magnetoresistance Sensor and Magnetic Flux Concentrators: A Novel Comb-Shaped Sensor for Improved Sensitivity.
    Kulkarni PD; Iwasaki H; Nakatani T
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Materials Properties of Printable Edible Inks and Printing Parameters Optimization during 3D Printing: a review.
    Feng C; Zhang M; Bhandari B
    Crit Rev Food Sci Nutr; 2019; 59(19):3074-3081. PubMed ID: 29856675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-sized ceramic inks for drop-on-demand ink-jet printing in quadrichromy.
    Gardini D; Dondi M; Costa AL; Matteucci F; Blosi M; Galassi C; Baldi G; Cinotti E
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1979-88. PubMed ID: 18572602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-performance magnetic sensorics for printable and flexible electronics.
    Karnaushenko D; Makarov D; Stöber M; Karnaushenko DD; Baunack S; Schmidt OG
    Adv Mater; 2015 Feb; 27(5):880-5. PubMed ID: 25366983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Progress in Materials and Devices toward Printable and Flexible Sensors.
    Rim YS; Bae SH; Chen H; De Marco N; Yang Y
    Adv Mater; 2016 Jun; 28(22):4415-40. PubMed ID: 26898945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetoresistive performance and comparison of supermagnetic nanoparticles on giant magnetoresistive sensor-based detection system.
    Wang W; Wang Y; Tu L; Feng Y; Klein T; Wang JP
    Sci Rep; 2014 Jul; 4():5716. PubMed ID: 25043673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Inks for Printable Energy Storage Applications based on 2 D Materials.
    Wang L; Chen S; Shu T; Hu X
    ChemSusChem; 2020 Mar; 13(6):1330-1353. PubMed ID: 31373172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of radioactive phantoms using a standard inkjet printer and the public domain multi-printing code GENIA.
    Scafè R; Auer P; Bennati P; La Porta L; Pisacane F; Cinti MN; Pellegrini R; De Vincentis G; Conte G; Pani R
    Phys Med; 2011 Oct; 27(4):209-23. PubMed ID: 21071252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Printable temperature-responsive hybrid hydrogels with photoluminescent carbon nanodots.
    Li P; Huang L; Lin Y; Shen L; Chen Q; Shi W
    Nanotechnology; 2014 Feb; 25(5):055603. PubMed ID: 24406292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electroluminescence device for printable electronics using coprecipitated ZnS:Mn nanocrystal ink.
    Toyama T; Hama T; Adachi D; Nakashizu Y; Okamoto H
    Nanotechnology; 2009 Feb; 20(5):055203. PubMed ID: 19417340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Custom 3D Printable Silicones with Tunable Stiffness.
    Durban MM; Lenhardt JM; Wu AS; Small W; Bryson TM; Perez-Perez L; Nguyen DT; Gammon S; Smay JE; Duoss EB; Lewicki JP; Wilson TS
    Macromol Rapid Commun; 2018 Feb; 39(4):. PubMed ID: 29210493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoalloy Printed and Pulse-Laser Sintered Flexible Sensor Devices with Enhanced Stability and Materials Compatibility.
    Zhao W; Rovere T; Weerawarne D; Osterhoudt G; Kang N; Joseph P; Luo J; Shim B; Poliks M; Zhong CJ
    ACS Nano; 2015 Jun; 9(6):6168-77. PubMed ID: 26034999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags.
    Hong H; Hu J; Yan X
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27318-27326. PubMed ID: 31284718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive Introspection of Magnetoresistive sensors applied in biomedical diagnostics.
    Gayathri SV; Subbulekshmi D
    Curr Med Imaging; 2023 Aug; ():. PubMed ID: 37622556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic-field-sensing materials composed of metal-semiconductor hybrid nanostructures.
    Akinaga H
    J Nanosci Nanotechnol; 2005 Feb; 5(2):250-4. PubMed ID: 15853143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Magnetoresistive Tactile Sensor for Harsh Environment Applications.
    Alfadhel A; Khan MA; Cardoso S; Leitao D; Kosel J
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27164113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully printed, highly sensitive multifunctional artificial electronic whisker arrays integrated with strain and temperature sensors.
    Harada S; Honda W; Arie T; Akita S; Takei K
    ACS Nano; 2014 Apr; 8(4):3921-7. PubMed ID: 24580035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric Field-Tunable Giant Magnetoresistance (GMR) Sensor with Enhanced Linear Range.
    Wang L; Hu Z; Zhu Y; Xian D; Cai J; Guan M; Wang C; Duan J; Wu J; Wang Z; Zhou Z; Jiang ZD; Zeng Z; Liu M
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8855-8861. PubMed ID: 31984722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of capillary electrophoresis to examination of color inkjet printing inks for forensic purposes.
    Szafarska M; Wietecha-Posłuszny R; Woźniakiewicz M; Kościelniak P
    Forensic Sci Int; 2011 Oct; 212(1-3):78-85. PubMed ID: 21664080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.