BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 22761026)

  • 1. Crafting semiconductor organic-inorganic nanocomposites via placing conjugated polymers in intimate contact with nanocrystals for hybrid solar cells.
    Zhao L; Lin Z
    Adv Mater; 2012 Aug; 24(32):4353-68. PubMed ID: 22761026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward High-Performance Organic-Inorganic Hybrid Solar Cells: Bringing Conjugated Polymers and Inorganic Nanocrystals in Close Contact.
    He M; Qiu F; Lin Z
    J Phys Chem Lett; 2013 Jun; 4(11):1788-96. PubMed ID: 26283110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the efficiency of solution-processed polymer:colloidal nanocrystal hybrid photovoltaic cells using ethanedithiol treatment.
    Zhou R; Stalder R; Xie D; Cao W; Zheng Y; Yang Y; Plaisant M; Holloway PH; Schanze KS; Reynolds JR; Xue J
    ACS Nano; 2013 Jun; 7(6):4846-54. PubMed ID: 23668301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocomposite "superhighways" by solution assembly of semiconductor nanostructures with ligand-functionalized conjugated polymers.
    Pentzer EB; Bokel FA; Hayward RC; Emrick T
    Adv Mater; 2012 May; 24(17):2254-8. PubMed ID: 22451039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic-inorganic nanocomposites by placing conjugated polymers in intimate contact with quantum rods.
    Zhao L; Pang X; Adhikary R; Petrich JW; Jeffries-El M; Lin Z
    Adv Mater; 2011 Jul; 23(25):2844-9. PubMed ID: 21590817
    [No Abstract]   [Full Text] [Related]  

  • 6. Conjugated polymers/semiconductor nanocrystals hybrid materials--preparation, electrical transport properties and applications.
    Reiss P; Couderc E; De Girolamo J; Pron A
    Nanoscale; 2011 Feb; 3(2):446-89. PubMed ID: 21152569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harvesting solar energy by means of charge-separating nanocrystals and their solids.
    Diederich G; O'Connor T; Moroz P; Kinder E; Kohn E; Perera D; Lorek R; Lambright S; Imboden M; Zamkov M
    J Vis Exp; 2012 Aug; (66):e4296. PubMed ID: 22951526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid photovoltaics based on semiconductor nanocrystals and amorphous silicon.
    Sun B; Findikoglu AT; Sykora M; Werder DJ; Klimov VI
    Nano Lett; 2009 Mar; 9(3):1235-41. PubMed ID: 19209920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semiconducting organic-inorganic nanocomposites by intimately tethering conjugated polymers to inorganic tetrapods.
    Jung J; Yoon YJ; Lin Z
    Nanoscale; 2016 Apr; 8(16):8887-98. PubMed ID: 27071462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiscale tomographic analysis of polymer-nanoparticle hybrid materials for solar cells.
    Lopez-Haro M; Jiu T; Bayle-Guillemaud P; Jouneau PH; Chandezon F
    Nanoscale; 2013 Nov; 5(22):10945-55. PubMed ID: 24062024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructured hybrid polymer-inorganic solar cell active layers formed by controllable in situ growth of semiconducting sulfide networks.
    Leventis HC; King SP; Sudlow A; Hill MS; Molloy KC; Haque SA
    Nano Lett; 2010 Apr; 10(4):1253-8. PubMed ID: 20225884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid solar cells from MDMO-PPV and silicon nanocrystals.
    Liu CY; Kortshagen UR
    Nanoscale; 2012 Jul; 4(13):3963-8. PubMed ID: 22660893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. n-Channel semiconductor materials design for organic complementary circuits.
    Usta H; Facchetti A; Marks TJ
    Acc Chem Res; 2011 Jul; 44(7):501-10. PubMed ID: 21615105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy transfer versus charge separation in type-II hybrid organic-inorganic nanocomposites.
    Lutich AA; Jiang G; Susha AS; Rogach AL; Stefani FD; Feldmann J
    Nano Lett; 2009 Jul; 9(7):2636-40. PubMed ID: 19507819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals.
    Gur I; Fromer NA; Chen CP; Kanaras AG; Alivisatos AP
    Nano Lett; 2007 Feb; 7(2):409-14. PubMed ID: 17298008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology control in biphasic hybrid systems of semiconducting materials.
    Mathias F; Fokina A; Landfester K; Tremel W; Schmid F; Char K; Zentel R
    Macromol Rapid Commun; 2015 Jun; 36(11):959-83. PubMed ID: 25737161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of CdSe-TiO2 nanocomposites and their applications to TiO2 sensitized solar cells.
    Kim J; Choi S; Noh J; Yoon S; Lee S; Noh T; Frank AJ; Hong K
    Langmuir; 2009 May; 25(9):5348-51. PubMed ID: 19249822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic-Inorganic Composites of Semiconductor Nanocrystals for Efficient Excitonics.
    Guzelturk B; Demir HV
    J Phys Chem Lett; 2015 Jun; 6(12):2206-15. PubMed ID: 26266593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bulk Heterojunction Solar Cells Based on Blends of Conjugated Polymers with II⁻VI and IV⁻VI Inorganic Semiconductor Quantum Dots.
    Kisslinger R; Hua W; Shankar K
    Polymers (Basel); 2017 Jan; 9(2):. PubMed ID: 30970717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CdSe nanocrystal based chem-/bio- sensors.
    Somers RC; Bawendi MG; Nocera DG
    Chem Soc Rev; 2007 Apr; 36(4):579-91. PubMed ID: 17387407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.