These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 22761045)

  • 1. Cell-surface sensors: lighting the cellular environment.
    Ali MM; Kang DK; Tsang K; Fu M; Karp JM; Zhao W
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2012; 4(5):547-61. PubMed ID: 22761045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent developments of genetically encoded optical sensors for cell biology.
    Bolbat A; Schultz C
    Biol Cell; 2017 Jan; 109(1):1-23. PubMed ID: 27628952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in Development of Genetically Encoded Fluorescent Sensors.
    Sanford L; Palmer A
    Methods Enzymol; 2017; 589():1-49. PubMed ID: 28336060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of Nucleic Acids and Synthetic Cofactors as Holo Sensors for Probing Signaling Molecules in the Cellular Membrane Microenvironment.
    Feng G; Luo X; Lu X; Xie S; Deng L; Kang W; He F; Zhang J; Lei C; Lin B; Huang Y; Nie Z; Yao S
    Angew Chem Int Ed Engl; 2019 May; 58(20):6590-6594. PubMed ID: 30843301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lighting up the brain: genetically encoded fluorescent sensors for imaging neurotransmitters and neuromodulators.
    Wang H; Jing M; Li Y
    Curr Opin Neurobiol; 2018 Jun; 50():171-178. PubMed ID: 29627516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semisynthesis of fluorescent metabolite sensors on cell surfaces.
    Brun MA; Griss R; Reymond L; Tan KT; Piguet J; Peters RJ; Vogel H; Johnsson K
    J Am Chem Soc; 2011 Oct; 133(40):16235-42. PubMed ID: 21879732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-surface sensors for real-time probing of cellular environments.
    Zhao W; Schafer S; Choi J; Yamanaka YJ; Lombardi ML; Bose S; Carlson AL; Phillips JA; Teo W; Droujinine IA; Cui CH; Jain RK; Lammerding J; Love JC; Lin CP; Sarkar D; Karnik R; Karp JM
    Nat Nanotechnol; 2011 Jul; 6(8):524-31. PubMed ID: 21765401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell membrane-anchored biosensors for real-time monitoring of the cellular microenvironment.
    Qiu L; Zhang T; Jiang J; Wu C; Zhu G; You M; Chen X; Zhang L; Cui C; Yu R; Tan W
    J Am Chem Soc; 2014 Sep; 136(38):13090-3. PubMed ID: 25188419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging and tracing of intracellular metabolites utilizing genetically encoded fluorescent biosensors.
    Zhang C; Wei ZH; Ye BC
    Biotechnol J; 2013 Nov; 8(11):1280-91. PubMed ID: 24591186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetically encoded redox sensors.
    Chiu WK; Towheed A; Palladino MJ
    Methods Enzymol; 2014; 542():263-87. PubMed ID: 24862271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in intracellular and in vivo ROS sensing: focus on nanoparticle and nanotube applications.
    Uusitalo LM; Hempel N
    Int J Mol Sci; 2012; 13(9):10660-10679. PubMed ID: 23109815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical probing of neuronal circuit dynamics: genetically encoded versus classical fluorescent sensors.
    Knöpfel T; Díez-García J; Akemann W
    Trends Neurosci; 2006 Mar; 29(3):160-6. PubMed ID: 16443289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designs, applications, and limitations of genetically encoded fluorescent sensors to explore plant biology.
    Sadoine M; Ishikawa Y; Kleist TJ; Wudick MM; Nakamura M; Grossmann G; Frommer WB; Ho CH
    Plant Physiol; 2021 Oct; 187(2):485-503. PubMed ID: 35237822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNAzyme-gold nanoparticle-based probes for biosensing and bioimaging.
    Hu L; Fu X; Kong G; Yin Y; Meng HM; Ke G; Zhang XB
    J Mater Chem B; 2020 Oct; 8(41):9449-9465. PubMed ID: 32955066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA-Based Fluorescent Biosensors for Detecting Metabolites in vitro and in Living Cells.
    Jaffrey SR
    Adv Pharmacol; 2018; 82():187-203. PubMed ID: 29413520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging.
    Ding C; Zhu A; Tian Y
    Acc Chem Res; 2014 Jan; 47(1):20-30. PubMed ID: 23911118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring cellular redox state under hypoxia using a fluorescent sensor based on eel fluorescent protein.
    Hu H; Wang A; Huang L; Zou Y; Gu Y; Chen X; Zhao Y; Yang Y
    Free Radic Biol Med; 2018 May; 120():255-265. PubMed ID: 29580984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time and high-throughput analysis of mitochondrial metabolic states in living cells using genetically encoded NAD
    Zhao Y; Yang Y
    Free Radic Biol Med; 2016 Nov; 100():43-52. PubMed ID: 27261194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FRET-based genetically-encoded sensors for quantitative monitoring of metabolites.
    Mohsin M; Ahmad A; Iqbal M
    Biotechnol Lett; 2015 Oct; 37(10):1919-28. PubMed ID: 26184603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging intracellular metabolite and protein changes in live mammalian cells with bright fluorescent RNA-based genetically encoded sensors.
    Fang M; Li H; Xie X; Wang H; Jiang Y; Li T; Zhang B; Jiang X; Cao Y; Zhang R; Zhang D; Zhao Y; Zhu L; Chen X; Yang Y
    Biosens Bioelectron; 2023 Sep; 235():115411. PubMed ID: 37236014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.