These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 22761112)

  • 21. Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae.
    Dodson S; Haggui M; Bachelot R; Plain J; Li S; Xiong Q
    J Phys Chem Lett; 2013 Feb; 4(3):496-501. PubMed ID: 26281746
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D Plasmon Coupling Assisted Sers on Nanoparticle-Nanocup Array Hybrids.
    Seo S; Chang TW; Liu GL
    Sci Rep; 2018 Feb; 8(1):3002. PubMed ID: 29445092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Doubly resonant surface-enhanced Raman scattering on gold nanorod decorated inverse opal photonic crystals.
    Tuyen le D; Liu AC; Huang CC; Tsai PC; Lin JH; Wu CW; Chau LK; Yang TS; Minh le Q; Kan HC; Hsu CC
    Opt Express; 2012 Dec; 20(28):29266-75. PubMed ID: 23388752
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Large-area nanogap plasmon resonator arrays for plasmonics applications.
    Jin M; van Wolferen H; Wormeester H; van den Berg A; Carlen ET
    Nanoscale; 2012 Aug; 4(15):4712-8. PubMed ID: 22743701
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Turning on resonant SERRS using the chromophore-plasmon coupling created by host-guest complexation at a plasmonic nanoarray.
    Witlicki EH; Andersen SS; Hansen SW; Jeppesen JO; Wong EW; Jensen L; Flood AH
    J Am Chem Soc; 2010 May; 132(17):6099-107. PubMed ID: 20387841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface- and tip-enhanced resonant Raman scattering from CdSe nanocrystals.
    Sheremet E; Milekhin AG; Rodriguez RD; Weiss T; Nesterov M; Rodyakina EE; Gordan OD; Sveshnikova LL; Duda TA; Gridchin VA; Dzhagan VM; Hietschold M; Zahn DR
    Phys Chem Chem Phys; 2015 Sep; 17(33):21198-203. PubMed ID: 25566587
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Raman enhancement on a broadband meta-surface.
    Ayas S; Güner H; Türker B; Ekiz OÖ; Dirisaglik F; Okyay AK; Dâna A
    ACS Nano; 2012 Aug; 6(8):6852-61. PubMed ID: 22845672
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Au@Ag core-shell nanocubes: epitaxial growth synthesis and surface-enhanced Raman scattering performance.
    Liu Y; Zhou J; Wang B; Jiang T; Ho HP; Petti L; Mormile P
    Phys Chem Chem Phys; 2015 Mar; 17(10):6819-26. PubMed ID: 25670345
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmonic Ag Core-Satellite Nanostructures with a Tunable Silica-Spaced Nanogap for Surface-Enhanced Raman Scattering.
    Rong Z; Xiao R; Wang C; Wang D; Wang S
    Langmuir; 2015 Jul; 31(29):8129-37. PubMed ID: 26132410
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical Field Enhancement in Au Nanoparticle-Decorated Nanorod Arrays Prepared by Femtosecond Laser and Their Tunable Surface-Enhanced Raman Scattering Applications.
    Cao W; Jiang L; Hu J; Wang A; Li X; Lu Y
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1297-1305. PubMed ID: 29256245
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anisotropic surface enhanced Raman scattering in nanoparticle and nanowire arrays.
    Ranjan M; Facsko S
    Nanotechnology; 2012 Dec; 23(48):485307. PubMed ID: 23128982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Further enhancement of the near-field on Au nanogap dimers using quasi-dark plasmon modes.
    Shibata K; Fujii S; Sun Q; Miura A; Ueno K
    J Chem Phys; 2020 Mar; 152(10):104706. PubMed ID: 32171196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effect of the film of gold nanowire arrays on surface enhanced Raman scattering].
    Zhai XF; Mu C; Xu DS; Tong LM; Zhu T; Du WM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Oct; 28(10):2329-32. PubMed ID: 19123400
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hybrid nanostructure of SiO
    Yang H; Li BQ; Jiang X; Shao J
    Nanoscale; 2019 Jul; 11(28):13484-13493. PubMed ID: 31289802
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanocavity-in-Multiple Nanogap Plasmonic Coupling Effects from Vertical Sandwich-Like Au@Al
    Yang C; Chen Y; Liu D; Chen C; Wang J; Fan Y; Huang S; Lei W
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8317-8323. PubMed ID: 29441776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface enhanced Raman scattering of p-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass.
    Wang Y; Chen H; Dong S; Wang E
    J Chem Phys; 2006 Feb; 124(7):74709. PubMed ID: 16497072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An in situ approach for facile fabrication of robust and scalable SERS substrates.
    Wang YC; DuChene JS; Huo F; Wei WD
    Nanoscale; 2014 Jul; 6(13):7232-6. PubMed ID: 24896881
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Doubly resonant optical nanoantenna arrays for polarization resolved measurements of surface-enhanced Raman scattering.
    Petschulat J; Cialla D; Janunts N; Rockstuhl C; Hübner U; Möller R; Schneidewind H; Mattheis R; Popp J; Tünnermann A; Lederer F; Pertsch T
    Opt Express; 2010 Mar; 18(5):4184-97. PubMed ID: 20389431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates.
    Smitha SL; Gopchandran KG; Ravindran TR; Prasad VS
    Nanotechnology; 2011 Jul; 22(26):265705. PubMed ID: 21576800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.