These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 22761112)

  • 41. Plasmonic-enhanced Raman scattering of graphene on growth substrates and its application in SERS.
    Zhao Y; Chen G; Du Y; Xu J; Wu S; Qu Y; Zhu Y
    Nanoscale; 2014 Nov; 6(22):13754-60. PubMed ID: 25285780
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Highly ordered arrays of particle-in-bowl plasmonic nanostructures for surface-enhanced raman scattering.
    Li X; Zhang Y; Shen ZX; Fan HJ
    Small; 2012 Aug; 8(16):2548-54. PubMed ID: 22674732
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Note: Simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scattering.
    Liu Y; Xu S; Tang B; Wang Y; Zhou J; Zheng X; Zhao B; Xu W
    Rev Sci Instrum; 2010 Mar; 81(3):036105. PubMed ID: 20370228
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evanescent field excited plasmonic nano-antenna for improving SERS signal.
    Gu Y; Li H; Xu S; Liu Y; Xu W
    Phys Chem Chem Phys; 2013 Oct; 15(37):15494-8. PubMed ID: 23942757
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An effective surface-enhanced Raman scattering template based on a Ag nanocluster-ZnO nanowire array.
    Deng S; Fan HM; Zhang X; Loh KP; Cheng CL; Sow CH; Foo YL
    Nanotechnology; 2009 Apr; 20(17):175705. PubMed ID: 19420600
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications.
    Li M; Cushing SK; Zhang J; Lankford J; Aguilar ZP; Ma D; Wu N
    Nanotechnology; 2012 Mar; 23(11):115501. PubMed ID: 22383452
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering.
    Liao Q; Mu C; Xu DS; Ai XC; Yao JN; Zhang JP
    Langmuir; 2009 Apr; 25(8):4708-14. PubMed ID: 19366228
    [TBL] [Abstract][Full Text] [Related]  

  • 48. SERS-active substrate based on gap surface plasmon polaritons.
    Kim HC; Cheng X
    Opt Express; 2009 Sep; 17(20):17234-41. PubMed ID: 19907510
    [TBL] [Abstract][Full Text] [Related]  

  • 49. From single to multiple Ag-layer modification of Au nanocavity substrates: a tunable probe of the chemical surface-enhanced Raman scattering mechanism.
    Tognalli NG; Cortés E; Hernández-Nieves AD; Carro P; Usaj G; Balseiro CA; Vela ME; Salvarezza RC; Fainstein A
    ACS Nano; 2011 Jul; 5(7):5433-43. PubMed ID: 21675769
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Wafer-scale double-layer stacked Au/Al2O3@Au nanosphere structure with tunable nanospacing for surface-enhanced Raman scattering.
    Hu Z; Liu Z; Li L; Quan B; Li Y; Li J; Gu C
    Small; 2014 Oct; 10(19):3933-42. PubMed ID: 24995658
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plasmon-Driven Dynamic Response of a Hierarchically Structural Silver-Decorated Nanorod Array for Sub-10 nm Nanogaps.
    Wang Y; Wang H; Wang Y; Shen Y; Xu S; Xu W
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15623-9. PubMed ID: 27250862
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies.
    Chu Y; Banaee MG; Crozier KB
    ACS Nano; 2010 May; 4(5):2804-10. PubMed ID: 20429521
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Numerical investigation of plasmon sensitivity and surface-enhanced Raman scattering enhancement of individual TiN nanosphere multimers.
    Fu T; Chen Y; Du C; Yang W; Zhang R; Sun L; Shi D
    Nanotechnology; 2020 Mar; 31(13):135210. PubMed ID: 31835258
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamic placement of plasmonic hotspots for super-resolution surface-enhanced Raman scattering.
    Ertsgaard CT; McKoskey RM; Rich IS; Lindquist NC
    ACS Nano; 2014 Oct; 8(10):10941-6. PubMed ID: 25268457
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Wavelength-scanned surface-enhanced Raman excitation spectroscopy.
    McFarland AD; Young MA; Dieringer JA; Van Duyne RP
    J Phys Chem B; 2005 Jun; 109(22):11279-85. PubMed ID: 16852377
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Controlled fabrication of silver nanoneedles array for SERS and their application in rapid detection of narcotics.
    Yang Y; Li ZY; Yamaguchi K; Tanemura M; Huang Z; Jiang D; Chen Y; Zhou F; Nogami M
    Nanoscale; 2012 Apr; 4(8):2663-9. PubMed ID: 22410821
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of the tip shape on the localized field enhancement and far field radiation pattern of the plasmonic inverted pyramidal nanostructures with the tips for surface-enhanced Raman scattering.
    Cheng HH; Chen SW; Chang YY; Chu JY; Lin DZ; Chen YP; Li JH
    Opt Express; 2011 Oct; 19(22):22125-41. PubMed ID: 22109056
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering.
    Cade NI; Ritman-Meer T; Kwaka K; Richards D
    Nanotechnology; 2009 Jul; 20(28):285201. PubMed ID: 19546490
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Incident angle-tuned, broadband, ultrahigh-sensitivity plasmonic antennas prepared from nanoparticles on imprinted mirrors.
    Yu CC; Tseng YC; Su PY; Lin KT; Shao CC; Chou SY; Yen YT; Chen HL
    Nanoscale; 2015 Mar; 7(9):3985-96. PubMed ID: 25567353
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Templated fabrication of metal half-shells for surface-enhanced Raman scattering.
    Liu X; Linn NC; Sun CH; Jiang P
    Phys Chem Chem Phys; 2010 Feb; 12(6):1379-87. PubMed ID: 20119616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.