These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 227613)

  • 1. Mechanisms of inhibition of active transport ATPases by mercurials.
    Berg GG; Miles EF
    Chem Biol Interact; 1979 Oct; 27(2-3):199-219. PubMed ID: 227613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of ouabain on ATPase activities in human erythrocyte membranes.
    Li JC; Hinds TR; Vincenzi FF
    Proc West Pharmacol Soc; 1990; 33():143-8. PubMed ID: 2177192
    [No Abstract]   [Full Text] [Related]  

  • 3. Differential effects of mercurial compounds on excitable tissues.
    Shamoo AE; Maclennan DH; Elderfrawi ME
    Chem Biol Interact; 1976 Jan; 12(1):41-52. PubMed ID: 129302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. R 24571: a new powerful inhibitor of red blood cell Ca++-transport ATPase and of calmodulin-regulated functions.
    Gietzen K; Wüthrich A; Bader H
    Biochem Biophys Res Commun; 1981 Jul; 101(2):418-25. PubMed ID: 6272758
    [No Abstract]   [Full Text] [Related]  

  • 5. Inhibition of erythrocyte ATPase activity by aclacinomycin and reverse effects of ascorbate on ATPase activity.
    Kitao T; Hattori K
    Experientia; 1983 Dec; 39(12):1362-4. PubMed ID: 6317432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of red cell Ca2+-ATPase by vanadate.
    Bond GH; Hudgins PM
    Biochim Biophys Acta; 1980 Aug; 600(3):781-90. PubMed ID: 6447513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AlF4- reversibly inhibits 'P'-type cation-transport ATPases, possibly by interacting with the phosphate-binding site of the ATPase.
    Missiaen L; Wuytack F; De Smedt H; Vrolix M; Casteels R
    Biochem J; 1988 Aug; 253(3):827-33. PubMed ID: 2845938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excess magnesium converts red cell (sodium+potassium) ATPase to the potassium phosphatase.
    Flatman PW; Lew VL
    J Physiol; 1980 Oct; 307():1-8. PubMed ID: 6259330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The evaluation of the role of endogenous Ca-dependent regulators and protein kinases in activating and inhibiting ion-transport ATPases].
    Petruniaka VV; Paniushkina EA
    Tsitologiia; 1991; 33(11):49-54. PubMed ID: 1668051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyamines do not inhibit erythrocyte ATPase activities.
    Ballas SK; Clark MR; Mohandas N; Shohet SB
    Clin Chim Acta; 1983 Apr; 129(3):287-93. PubMed ID: 6303631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic characterization of Na,K-ATPase inhibition by Eosin.
    Ogan JT; Reifenberger MS; Milanick MA; Gatto C
    Blood Cells Mol Dis; 2007; 38(3):229-37. PubMed ID: 17331759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Action of mercurials on the active and passive transport properties of sarcoplasmic reticulum.
    Chiu VC; Mouring D; Haynes DH
    J Bioenerg Biomembr; 1983 Feb; 15(1):13-25. PubMed ID: 6853473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport ATPases in the erythrocytes of rats acclimatized to intermittent altitude hypoxia.
    Kazennov AM; Procházka J; Pelouch V; Ostádal B; Maslova NM
    Physiol Bohemoslov; 1986; 35(5):406-13. PubMed ID: 3025901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the inhibition of brain synaptosomal Na+/K+-ATPase by mercury chloride and methyl mercury chloride.
    Magour S
    Arch Toxicol Suppl; 1986; 9():393-6. PubMed ID: 3028327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of ion pump ATPase activity by 3'-O-(4-benzoyl)benzoyl-ATP (BzATP): assessment of BzATP as an active site-directed probe.
    Tran CM; Farley RA
    Biochim Biophys Acta; 1986 Aug; 860(1):9-14. PubMed ID: 3015213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volatile anesthetics selectively inhibit the Ca(2+)-transporting ATPase in neuronal and erythrocyte plasma membranes.
    Fomitcheva I; Kosk-Kosicka D
    Anesthesiology; 1996 May; 84(5):1189-95. PubMed ID: 8624013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diamide inhibited (Ca++ + Mg++) and (Mg++) dependent ATPase in erythrocyte membranes: activity at different temperatures.
    Scutari G; Ballestrin G; Covaz L
    Boll Soc Ital Biol Sper; 1979 Jul; 55(13):1283-7. PubMed ID: 159703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Changes in acetylcholinesterase and ATPase activity and certain structural features of the erythrocyte membrane in experimental myocardial ischemia].
    Chernukh AM; Kopteva LA; Shevchenko AS
    Biull Eksp Biol Med; 1980 Sep; 90(9):270-2. PubMed ID: 6252988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of several ligands on the potassium-vanadate interaction in the inhibition of the (Na+ + K+)-ATPase and the Na+, K+ pump.
    Beaugé L; Berberian G
    Biochim Biophys Acta; 1983 Jan; 727(2):336-50. PubMed ID: 6301556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of erythrocyte membrane cation transport adenosine triphosphatases in pregnancy-induced hypertension and of in vivo effects of diuretic treatment.
    Kaplay SS; Prema K
    Clin Chim Acta; 1981 Feb; 110(1):27-33. PubMed ID: 6111403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.