These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 22761672)

  • 1. A fast and reliable method for simultaneous waveform, amplitude and latency estimation of single-trial EEG/MEG data.
    Weeda WD; Grasman RP; Waldorp LJ; van de Laar MC; van der Molen MW; Huizenga HM
    PLoS One; 2012; 7(6):e38292. PubMed ID: 22761672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Taking into account latency, amplitude, and morphology: improved estimation of single-trial ERPs by wavelet filtering and multiple linear regression.
    Hu L; Liang M; Mouraux A; Wise RG; Hu Y; Iannetti GD
    J Neurophysiol; 2011 Dec; 106(6):3216-29. PubMed ID: 21880936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals.
    Engemann DA; Gramfort A
    Neuroimage; 2015 Mar; 108():328-42. PubMed ID: 25541187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A spatiotemporal framework for estimating trial-to-trial amplitude variation in event-related MEG/EEG.
    Limpiti T; Van Veen BD; Attias HT; Nagarajan SS
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):633-45. PubMed ID: 19272883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel, Fast, Reliable, and Data-Driven Method for Simultaneous Single-Trial Mining and Amplitude-Latency Estimation Based on Proximity Graphs and Network Analysis.
    Dimitriadis SI; Brindley L; Evans LH; Linden DE; Singh KD
    Front Neuroinform; 2018; 12():59. PubMed ID: 30510507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three domain covariance framework for EEG/MEG data.
    Roś BP; Bijma F; de Gunst MC; de Munck JC
    Neuroimage; 2015 Oct; 119():305-15. PubMed ID: 26072253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clustering of early cortical responses to median nerve stimulation from average and single trial MEG and EEG signals.
    Zainea OF; Kostopoulos GK; Ioannides AA
    Brain Topogr; 2005; 17(4):219-36. PubMed ID: 16110772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic and robust noise suppression in EEG and MEG: The SOUND algorithm.
    Mutanen TP; Metsomaa J; Liljander S; Ilmoniemi RJ
    Neuroimage; 2018 Feb; 166():135-151. PubMed ID: 29061529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A resampling method for estimating the signal subspace of spatio-temporal EEG/MEG data.
    Maris E
    IEEE Trans Biomed Eng; 2003 Aug; 50(8):935-49. PubMed ID: 12892321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial neuronal synchronization and the waveform of oscillations: Implications for EEG and MEG.
    Schaworonkow N; Nikulin VV
    PLoS Comput Biol; 2019 May; 15(5):e1007055. PubMed ID: 31086368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An EEG Classification-Based Method for Single-Trial N170 Latency Detection and Estimation.
    Zang S; Ding X; Wu M; Zhou C
    Comput Math Methods Med; 2022; 2022():6331956. PubMed ID: 35222689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperedge bundling: A practical solution to spurious interactions in MEG/EEG source connectivity analyses.
    Wang SH; Lobier M; Siebenhühner F; Puoliväli T; Palva S; Palva JM
    Neuroimage; 2018 Jun; 173():610-622. PubMed ID: 29378318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetoencephalography signals are influenced by skull defects.
    Lau S; Flemming L; Haueisen J
    Clin Neurophysiol; 2014 Aug; 125(8):1653-62. PubMed ID: 24418220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of the benefit from integrating MEG and EEG data in minimum l2-norm estimation.
    Molins A; Stufflebeam SM; Brown EN; Hämäläinen MS
    Neuroimage; 2008 Sep; 42(3):1069-77. PubMed ID: 18602485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous EEG and MEG source reconstruction in sparse electromagnetic source imaging.
    Ding L; Yuan H
    Hum Brain Mapp; 2013 Apr; 34(4):775-95. PubMed ID: 22102512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring the cortical correlation structure of spontaneous oscillatory activity with EEG and MEG.
    Siems M; Pape AA; Hipp JF; Siegel M
    Neuroimage; 2016 Apr; 129():345-355. PubMed ID: 26827813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of neural dynamics from MEG/EEG cortical current density maps: application to the reconstruction of large-scale cortical synchrony.
    David O; Garnero L; Cosmelli D; Varela FJ
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):975-87. PubMed ID: 12214887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Truncated RAP-MUSIC (TRAP-MUSIC) for MEG and EEG source localization.
    Mäkelä N; Stenroos M; Sarvas J; Ilmoniemi RJ
    Neuroimage; 2018 Feb; 167():73-83. PubMed ID: 29128542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing the Performance of Popular MEG/EEG Artifact Correction Methods in an Evoked-Response Study.
    Haumann NT; Parkkonen L; Kliuchko M; Vuust P; Brattico E
    Comput Intell Neurosci; 2016; 2016():7489108. PubMed ID: 27524998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in MEG and EEG power-law scaling explained by a coupling between spatial coherence and frequency: a simulation study.
    Bénar CG; Grova C; Jirsa VK; Lina JM
    J Comput Neurosci; 2019 Aug; 47(1):31-41. PubMed ID: 31292816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.