BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 22761707)

  • 1. Defining an adequate sample of earlywood vessels for retrospective injury detection in diffuse-porous species.
    Arbellay E; Corona C; Stoffel M; Fonti P; Decaulne A
    PLoS One; 2012; 7(6):e38824. PubMed ID: 22761707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wood anatomical analysis of Alnus incana and Betula pendula injured by a debris-flow event.
    Arbellay E; Stoffel M; Bollschweiler M
    Tree Physiol; 2010 Oct; 30(10):1290-8. PubMed ID: 20639516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flash-flood impacts cause changes in wood anatomy of Alnus glutinosa, Fraxinus angustifolia and Quercus pyrenaica.
    Ballesteros JA; Stoffel M; Bollschweiler M; Bodoque JM; Díez-Herrero A
    Tree Physiol; 2010 Jun; 30(6):773-81. PubMed ID: 20462937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Browsing affects intra-ring carbon allocation in species with contrasting wood anatomy.
    Palacio S; Paterson E; Sim A; Hester AJ; Millard P
    Tree Physiol; 2011 Feb; 31(2):150-9. PubMed ID: 21388994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential anatomical responses to elevated CO2 in saplings of four hardwood species.
    Watanabe Y; Satomura T; Sasa K; Funada R; Koike T
    Plant Cell Environ; 2010 Jul; 33(7):1101-11. PubMed ID: 20199624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Duration and extension of anatomical changes in wood structure after cambial injury.
    Arbellay E; Fonti P; Stoffel M
    J Exp Bot; 2012 May; 63(8):3271-7. PubMed ID: 22378953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selecting earlywood vessels to maximize their environmental signal.
    García-González I; Fonti P
    Tree Physiol; 2006 Oct; 26(10):1289-96. PubMed ID: 16815831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disentangling the effects of disturbance, climate and tree age on xylem hydraulic conductivity of Betula pendula.
    Tumajer J; Treml V
    Ann Bot; 2019 May; 123(5):783-792. PubMed ID: 30551134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Earlywood Vessels in Black Ash (
    Tardif JC; Kames S; Nolin AF; Bergeron Y
    Front Plant Sci; 2021; 12():754596. PubMed ID: 34721484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of pollen counts of Corylus, Alnus and Betula in Szczecin, Warsaw and Lublin (2000-2001).
    Weryszko-Chmielewska E; Puc M; Rapiejko P
    Ann Agric Environ Med; 2001; 8(2):235-40. PubMed ID: 11748882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance imaging suggests functional role of previous year vessels and fibres in ring-porous sap flow resumption.
    Copini P; Vergeldt FJ; Fonti P; Sass-Klaassen U; den Ouden J; Sterck F; Decuyper M; Gerkema E; Windt CW; Van As H
    Tree Physiol; 2019 Jun; 39(6):1009-1018. PubMed ID: 30896019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Earlywood vessels of Castanea sativa record temperature before their formation.
    Fonti P; Solomonoff N; García-González I
    New Phytol; 2007; 173(3):562-570. PubMed ID: 17244050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flood-Ring Formation and Root Development in Response to Experimental Flooding of Young Quercus robur Trees.
    Copini P; den Ouden J; Robert EM; Tardif JC; Loesberg WA; Goudzwaard L; Sass-Klaassen U
    Front Plant Sci; 2016; 7():775. PubMed ID: 27379108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primary and secondary host plants differ in leaf-level photosynthetic response to herbivory: evidence from Alnus and Betula grazed by the alder beetle, Agelastica alni.
    Oleksyn J; Karolewski P; Giertych MJ; Zytkowiak R; Reich PB; Tjoelker MG
    New Phytol; 1998 Oct; 140(2):239-249. PubMed ID: 33862847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of localized heating and disbudding on cambial reactivation and formation of earlywood vessels in seedlings of the deciduous ring-porous hardwood, Quercus serrata.
    Kudo K; Nabeshima E; Begum S; Yamagishi Y; Nakaba S; Oribe Y; Yasue K; Funada R
    Ann Bot; 2014 May; 113(6):1021-7. PubMed ID: 24685716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Waterlogging in late dormancy and the early growth phase affected root and leaf morphology in Betula pendula and Betula pubescens seedlings.
    Wang AF; Roitto M; Sutinen S; Lehto T; Heinonen J; Zhang G; Repo T
    Tree Physiol; 2016 Jan; 36(1):86-98. PubMed ID: 26420790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonal fluctuations in leaf phenolic composition under UV manipulations reflect contrasting strategies of alder and birch trees.
    Kotilainen T; Tegelberg R; Julkunen-Tiitto R; Lindfors A; O'Hara RB; Aphalo PJ
    Physiol Plant; 2010 Nov; 140(3):297-309. PubMed ID: 20626643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrasting Carbon Allocation Strategies of Ring-Porous and Diffuse-Porous Species Converge Toward Similar Growth Responses to Drought.
    Buttó V; Millan M; Rossi S; Delagrange S
    Front Plant Sci; 2021; 12():760859. PubMed ID: 34975943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wood properties of Populus and Betula in long-term exposure to elevated CO₂ and O₃.
    Kostiainen K; Saranpää P; Lundqvist SO; Kubiske ME; Vapaavuori E
    Plant Cell Environ; 2014 Jun; 37(6):1452-63. PubMed ID: 24372544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics.
    Michelot A; Simard S; Rathgeber C; Dufrêne E; Damesin C
    Tree Physiol; 2012 Aug; 32(8):1033-45. PubMed ID: 22718524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.