These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 22761719)
1. A non-targeted approach unravels the volatile network in peach fruit. Sánchez G; Besada C; Badenes ML; Monforte AJ; Granell A PLoS One; 2012; 7(6):e38992. PubMed ID: 22761719 [TBL] [Abstract][Full Text] [Related]
2. Comparative analysis of volatile compounds in thirty nine melon cultivars by headspace solid-phase microextraction and gas chromatography-mass spectrometry. Shi J; Wu H; Xiong M; Chen Y; Chen J; Zhou B; Wang H; Li L; Fu X; Bie Z; Huang Y Food Chem; 2020 Jun; 316():126342. PubMed ID: 32044706 [TBL] [Abstract][Full Text] [Related]
3. An integrative "omics" approach identifies new candidate genes to impact aroma volatiles in peach fruit. Sánchez G; Venegas-Calerón M; Salas JJ; Monforte A; Badenes ML; Granell A BMC Genomics; 2013 May; 14():343. PubMed ID: 23701715 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the aromatic profile of purple passion fruit (Passiflora edulis Sims) during ripening by HS-SPME-GC/MS and RNA sequencing. Li C; Xin M; Li L; He X; Yi P; Tang Y; Li J; Zheng F; Liu G; Sheng J; Li Z; Sun J Food Chem; 2021 Sep; 355():129685. PubMed ID: 33799248 [TBL] [Abstract][Full Text] [Related]
5. Determination of volatile profiles of woodland strawberry (Fragaria vesca) during fruit maturation by HS-SPME GC-MS. Zheng S; Cai J; Huang P; Wang Y; Yang Z; Yu Y J Sci Food Agric; 2023 Dec; 103(15):7455-7468. PubMed ID: 37403783 [TBL] [Abstract][Full Text] [Related]
6. Evolution of volatile compounds in 'Cuoredolce®' and 'Rugby' mini- watermelons (Citrullus lanatus (Thunb.) Matsumura and Nakai) in relation to ripening at harvest. Bianchi G; Provenzi L; Rizzolo A J Sci Food Agric; 2020 Feb; 100(3):945-952. PubMed ID: 31489633 [TBL] [Abstract][Full Text] [Related]
7. Discrimination of cherry wines based on their sensory properties and aromatic fingerprinting using HS-SPME-GC-MS and multivariate analysis. Xiao Z; Liu S; Gu Y; Xu N; Shang Y; Zhu J J Food Sci; 2014 Mar; 79(3):C284-94. PubMed ID: 24611827 [TBL] [Abstract][Full Text] [Related]
8. Changes in aroma volatile compounds and ethylene production during "Hujingmilu" peach (Prunus persica L.) fruit development. Zhang XM; Jia HJ Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Feb; 31(1):41-6. PubMed ID: 15692177 [TBL] [Abstract][Full Text] [Related]
9. Identification of key odor volatile compounds in the essential oil of nine peach accessions. Eduardo I; Chietera G; Bassi D; Rossini L; Vecchietti A J Sci Food Agric; 2010 May; 90(7):1146-54. PubMed ID: 20393995 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of volatile compounds from Chinese dwarf cherry (Cerasus humilis (Bge.) Sok.) germplasms by headspace solid-phase microextraction and gas chromatography-mass spectrometry. Ye L; Yang C; Li W; Hao J; Sun M; Zhang J; Zhang Z Food Chem; 2017 Feb; 217():389-397. PubMed ID: 27664650 [TBL] [Abstract][Full Text] [Related]
11. Influence of harvest maturity and fruit logistics on pineapple (Ananas comosus [L.] Merr.) volatiles assessed by headspace solid phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC/MS). Steingass CB; Grauwet T; Carle R Food Chem; 2014 May; 150():382-91. PubMed ID: 24360466 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the volatile profile of 33 Pyrus ussuriensis cultivars by HS-SPME with GC-MS. Qin G; Tao S; Cao Y; Wu J; Zhang H; Huang W; Zhang S Food Chem; 2012 Oct; 134(4):2367-82. PubMed ID: 23442698 [TBL] [Abstract][Full Text] [Related]
13. Analysis of Volatile Compounds in Pears by HS-SPME-GC×GC-TOFMS. Wang C; Zhang W; Li H; Mao J; Guo C; Ding R; Wang Y; Fang L; Chen Z; Yang G Molecules; 2019 May; 24(9):. PubMed ID: 31075878 [TBL] [Abstract][Full Text] [Related]
14. Comparative analysis of volatile aromatic compounds from a wide range of pear (PyrusL.) germplasm resources based on HS-SPME with GC-MS. Wang X; Chen Y; Zhang J; Wang Z; Qi K; Li H; Tian R; Wu X; Qiao X; Zhang S; Yin H Food Chem; 2023 Aug; 418():135963. PubMed ID: 36944308 [TBL] [Abstract][Full Text] [Related]
15. Pattern recognition of peach cultivars (Prunus persica L.) from their volatile components. Montero-Prado P; Bentayeb K; Nerín C Food Chem; 2013 May; 138(1):724-31. PubMed ID: 23265546 [TBL] [Abstract][Full Text] [Related]
16. Analysis of Volatile Aroma Components and Regulatory Genes in Different Kinds and Development Stages of Pepper Fruits Based on Non-Targeted Metabolome Combined with Transcriptome. Huang C; Sun P; Yu S; Fu G; Deng Q; Wang Z; Cheng S Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175606 [TBL] [Abstract][Full Text] [Related]
17. Distribution of aroma volatile compounds in tangerine hybrids and proposed inheritance. Miyazaki T; Plotto A; Goodner K; Gmitter FG J Sci Food Agric; 2011 Feb; 91(3):449-60. PubMed ID: 21218478 [TBL] [Abstract][Full Text] [Related]
18. Distribution of Volatile Compounds in Different Fruit Structures in Four Tomato Cultivars. Li J; Di T; Bai J Molecules; 2019 Jul; 24(14):. PubMed ID: 31319482 [TBL] [Abstract][Full Text] [Related]
19. Heritability and genetic and phenotypic correlations of apple (Malus x domestica) fruit volatiles in a genetically diverse breeding population. Rowan DD; Hunt MB; Alspach PA; Whitworth CJ; Oraguzie NC J Agric Food Chem; 2009 Sep; 57(17):7944-52. PubMed ID: 19691324 [TBL] [Abstract][Full Text] [Related]
20. Comparison of techniques for the isolation of volatiles from cashew apple juice. Sampaio KL; Biasoto AC; Da Silva MA J Sci Food Agric; 2015 Jan; 95(2):299-312. PubMed ID: 24789719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]