These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 22761740)

  • 101. Analysis of sphingosine kinase activity in single natural killer cells from peripheral blood.
    Dickinson AJ; Meyer M; Pawlak EA; Gomez S; Jaspers I; Allbritton NL
    Integr Biol (Camb); 2015 Apr; 7(4):392-401. PubMed ID: 25786072
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Single-cell sphingosine kinase activity measurements in primary leukemia.
    Dickinson AJ; Hunsucker SA; Armistead PM; Allbritton NL
    Anal Bioanal Chem; 2014 Nov; 406(27):7027-36. PubMed ID: 24980601
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Determining the Anticancer Activity of Sphingosine Kinase Inhibitors Containing Heteroatoms in Their Tail Structure.
    Shrestha J; Kim SW; Kim SB; Oh YS; Ki SH; Lee T; Kim SB; Park T; Baek DJ; Park EY
    Pharmaceutics; 2022 Jan; 14(1):. PubMed ID: 35057052
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Prolactin acts as a potent survival factor for human breast cancer cell lines.
    Perks CM; Keith AJ; Goodhew KL; Savage PB; Winters ZE; Holly JM
    Br J Cancer; 2004 Jul; 91(2):305-11. PubMed ID: 15213724
    [TBL] [Abstract][Full Text] [Related]  

  • 105. PKC signal amplification suppresses non-small cell lung cancer growth by promoting p21 expression and phosphorylation.
    Liu S; Zhang Y; Yang Q; Zhang Y; Liu H; Huang MH; Wang R; Lu F
    Heliyon; 2022 Sep; 8(9):e10657. PubMed ID: 36158087
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Simultaneous time-varying viscosity, elasticity, and mass measurements of single adherent cancer cells across cell cycle.
    Adeniba OO; Corbin EA; Ganguli A; Kim Y; Bashir R
    Sci Rep; 2020 Jul; 10(1):12803. PubMed ID: 32733047
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Cancer: Lipid kinase PIP5K1α as a new target in prostate cancer.
    Flemming A
    Nat Rev Drug Discov; 2014 Oct; 13(10):723. PubMed ID: 25270953
    [No Abstract]   [Full Text] [Related]  

  • 108. Signalling: a new target for p53-null tumours.
    Lokody I
    Nat Rev Cancer; 2014 Jan; 14(1):8-9. PubMed ID: 24304875
    [No Abstract]   [Full Text] [Related]  

  • 109. PIP5K1α inhibition as a therapeutic strategy for prostate cancer.
    Drake JM; Huang J
    Proc Natl Acad Sci U S A; 2014 Sep; 111(35):12578-9. PubMed ID: 25118275
    [No Abstract]   [Full Text] [Related]  

  • 110. Automated capillary electrophoresis system for fast single-cell analysis.
    Dickinson AJ; Armistead PM; Allbritton NL
    Anal Chem; 2013 May; 85(9):4797-804. PubMed ID: 23527995
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Sphingosine 1-Phosphate signaling controls mitosis.
    Cuvillier O; Hatzoglou A
    Oncotarget; 2017 Dec; 8(70):114414-114415. PubMed ID: 29383084
    [No Abstract]   [Full Text] [Related]  

  • 112. Twofer anti-vascular therapy targeting sphingosine-1-phosphate for breast cancer.
    Takabe K; Yamada A; Rashid OM; Adams BJ; Huang WC; Aoyagi T; Nagahashi M
    Gland Surg; 2012 Aug; 1(2):80-83. PubMed ID: 24855599
    [No Abstract]   [Full Text] [Related]  

  • 113. Correction: Suppression of PKC causes oncogenic stress for triggering apoptosis in cancer cells.
    Ganapathy S; Peng B; Shen L; Yu T; Lafontant J; Li P; Xiong R; Makriyannis A; Chen C
    Oncotarget; 2023 Feb; 14():148. PubMed ID: 36848407
    [No Abstract]   [Full Text] [Related]  

  • 114. Signaling controversy and future therapeutical perspectives of targeting sphingolipid network in cancer immune editing and resistance to tumor necrosis factor-α immunotherapy.
    Sukocheva OA; Neganova ME; Aleksandrova Y; Burcher JT; Chugunova E; Fan R; Tse E; Sethi G; Bishayee A; Liu J
    Cell Commun Signal; 2024 May; 22(1):251. PubMed ID: 38698424
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Pharmacological Effects of FTY720 and its Derivatives.
    Han M; Liu X; Hailati S; Maihemuti N; Nurahmat N; Dilimulati D; Baishan A; Aikebaier A; Zhou W; Pan Y
    Curr Top Med Chem; 2024; 24(3):192-200. PubMed ID: 38185890
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Lipid Polarization during Cytokinesis.
    Kunduri G; Acharya U; Acharya JK
    Cells; 2022 Dec; 11(24):. PubMed ID: 36552741
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Sphingosine Kinase 1 Signaling in Breast Cancer: A Potential Target to Tackle Breast Cancer Stem Cells.
    Hii LW; Chung FF; Mai CW; Ng PY; Leong CO
    Front Mol Biosci; 2021; 8():748470. PubMed ID: 34820423
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Sphingolipids in embryonic development, cell cycle regulation, and stemness - Implications for polyploidy in tumors.
    Voelkel-Johnson C
    Semin Cancer Biol; 2022 Jun; 81():206-219. PubMed ID: 33429049
    [TBL] [Abstract][Full Text] [Related]  

  • 119. The Tumorigenic Effect of Sphingosine Kinase 1 and Its Potential Therapeutic Target.
    Wang X; Sun Y; Peng X; Naqvi SMAS; Yang Y; Zhang J; Chen M; Chen Y; Chen H; Yan H; Wei G; Hong P; Lu Y
    Cancer Control; 2020; 27(1):1073274820976664. PubMed ID: 33317322
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Sphingosine Kinase 1 in Breast Cancer-A New Molecular Marker and a Therapy Target.
    Alshaker H; Thrower H; Pchejetski D
    Front Oncol; 2020; 10():289. PubMed ID: 32266132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.