BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22761788)

  • 1. Human peripheral blood mononuclear cells exhibit heterogeneous CD52 expression levels and show differential sensitivity to alemtuzumab mediated cytolysis.
    Rao SP; Sancho J; Campos-Rivera J; Boutin PM; Severy PB; Weeden T; Shankara S; Roberts BL; Kaplan JM
    PLoS One; 2012; 7(6):e39416. PubMed ID: 22761788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variable CD52 expression in mature T cell and NK cell malignancies: implications for alemtuzumab therapy.
    Jiang L; Yuan CM; Hubacheck J; Janik JE; Wilson W; Morris JC; Jasper GA; Stetler-Stevenson M
    Br J Haematol; 2009 Apr; 145(2):173-9. PubMed ID: 19236377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytokine release assays for the prediction of therapeutic mAb safety in first-in man trials--Whole blood cytokine release assays are poorly predictive for TGN1412 cytokine storm.
    Vessillier S; Eastwood D; Fox B; Sathish J; Sethu S; Dougall T; Thorpe SJ; Thorpe R; Stebbings R
    J Immunol Methods; 2015 Sep; 424():43-52. PubMed ID: 25960173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CD52 Is Elevated on B cells of SLE Patients and Regulates B Cell Function.
    Bhamidipati K; Silberstein JL; Chaichian Y; Baker MC; Lanz TV; Zia A; Rasheed YS; Cochran JR; Robinson WH
    Front Immunol; 2020; 11():626820. PubMed ID: 33658999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primary structure of CD52.
    Treumann A; Lifely MR; Schneider P; Ferguson MA
    J Biol Chem; 1995 Mar; 270(11):6088-99. PubMed ID: 7890742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CD52 knockdown inhibits aerobic glycolysis and malignant behavior of NSCLC cells through AKT signaling pathway.
    Cai Y; Zhao J; Luo C; Fang M; Yi Y; Chen Y; Huang P; Liao L; Huang L
    J Cancer; 2024; 15(11):3394-3405. PubMed ID: 38817869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allogeneic Hematopoietic cell Transplantation Using Alemtuzumab in Asian Patients with Inborn Errors of Immunity.
    Miyamoto S; Niizato D; Tomomasa D; Nishimura A; Hoshino A; Kamiya T; Isoda T; Takagi M; Kajiwara M; Azumi S; Hirabayashi S; Sakamoto K; Kishimoto K; Miyamura T; Umeda K; Hirose A; Keino D; Yanagimachi M; Kanda K; Sakai Y; Ikawa Y; Watanabe K; Tanaka K; Mori T; Ichinohe T; Sakaguchi H; Morio T; Kanegane H
    J Clin Immunol; 2024 May; 44(6):126. PubMed ID: 38773000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glomerulonephritis after Alemtuzumab Treatment for Multiple Sclerosis: A Report of Two Cases.
    Almuhaiteeb A; Alkeay K; Altaleb A
    Glomerular Dis; 2024; 4(1):84-90. PubMed ID: 38660579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Risk of secondary immune thrombocytopenia following alemtuzumab treatment for multiple sclerosis: a systematic review and meta-analysis.
    Sun Y; Liu Z; Yang J; Jia Q; Sun J; Wang L; Liang F; Song S; Wang K; Zhou X
    Front Neurol; 2024; 15():1375615. PubMed ID: 38660089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disease Modifying Strategies in Multiple Sclerosis: New Rays of Hope to Combat Disability?
    Bellanca CM; Augello E; Mariottini A; Bonaventura G; La Cognata V; Di Benedetto G; Cantone AF; Attaguile G; Di Mauro R; Cantarella G; Massacesi L; Bernardini R
    Curr Neuropharmacol; 2024; 22(8):1286-1326. PubMed ID: 38275058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neonatal immune cells have heightened responses following in-utero exposure to chorioamnionitis or COVID-19.
    Gilley A; Boly TJ; Paden A; Bermick J
    Pediatr Res; 2024 May; 95(6):1483-1492. PubMed ID: 37949998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Safety and efficacy with alemtuzumab over 13 years in relapsing-remitting multiple sclerosis: final results from the open-label TOPAZ study.
    Coles AJ; Achiron A; Traboulsee A; Singer BA; Pozzilli C; Oreja-Guevara C; Giovannoni G; Comi G; Freedman MS; Ziemssen T; Shiota D; Rawlings AM; Wong AT; Chirieac M; Montalban X
    Ther Adv Neurol Disord; 2023; 16():17562864231194823. PubMed ID: 37745914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immune reconstitution following alemtuzumab therapy is characterized by exhausted T cells, increased regulatory control of proinflammatory T cells and reduced B cell control.
    von Essen MR; Chow HH; Holm Hansen R; Buhelt S; Sellebjerg F
    Front Immunol; 2023; 14():1249201. PubMed ID: 37744364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alemtuzumab for multiple sclerosis.
    Riera R; Torloni MR; Martimbianco ALC; Pacheco RL
    Cochrane Database Syst Rev; 2023 Jun; 6(6):CD011203. PubMed ID: 37272540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adoptive T-cell therapy targeting Epstein-Barr virus as a treatment for multiple sclerosis.
    Smith C; Khanna R
    Clin Transl Immunology; 2023; 12(3):e1444. PubMed ID: 36960148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Risk of cervical pre-cancer and cancer in women with multiple sclerosis exposed to high efficacy disease modifying therapies.
    Bridge F; Brotherton JML; Foong Y; Butzkueven H; Jokubaitis VG; Van der Walt A
    Front Neurol; 2023; 14():1119660. PubMed ID: 36846149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Severe autoimmune intravascular hemolytic anemia in patients receiving alemtuzumab for multiple sclerosis.
    Sharma P; Saksena A; Diaz A; Pang Y; Desai P
    Blood Adv; 2023 Jun; 7(11):2534-2537. PubMed ID: 36375041
    [No Abstract]   [Full Text] [Related]  

  • 18. Peripheral blood and bronchoalveolar leukocyte profile in lung transplant recipients and their changes according to immunosuppressive regimen: A single-center experience.
    Jáky-Kováts Z; Vámos M; Komlósi ZI; Bikov A; Madurka I; Szűcs G; Müller V; Bohács A
    Immun Inflamm Dis; 2022 Aug; 10(8):e673. PubMed ID: 35894710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Logic-gated antibody pairs that selectively act on cells co-expressing two antigens.
    Oostindie SC; Rinaldi DA; Zom GG; Wester MJ; Paulet D; Al-Tamimi K; van der Meijden E; Scheick JR; Wilpshaar T; de Jong B; Hoff-van den Broek M; Grattan RM; Oosterhoff JJ; Vignau J; Verploegen S; Boross P; Beurskens FJ; Lidke DS; Schuurman J; de Jong RN
    Nat Biotechnol; 2022 Oct; 40(10):1509-1519. PubMed ID: 35879362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HDAC Inhibition as Potential Therapeutic Strategy to Restore the Deregulated Immune Response in Severe COVID-19.
    Ripamonti C; Spadotto V; Pozzi P; Stevenazzi A; Vergani B; Marchini M; Sandrone G; Bonetti E; Mazzarella L; Minucci S; Steinkühler C; Fossati G
    Front Immunol; 2022; 13():841716. PubMed ID: 35592335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.