These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 22761808)
1. Mass flux calculations show strong allochthonous support of freshwater zooplankton production is unlikely. Brett MT; Arhonditsis GB; Chandra S; Kainz MJ PLoS One; 2012; 7(6):e39508. PubMed ID: 22761808 [TBL] [Abstract][Full Text] [Related]
2. Differential support of lake food webs by three types of terrestrial organic carbon. Cole JJ; Carpenter SR; Pace ML; Van de Bogert MC; Kitchell JL; Hodgson JR Ecol Lett; 2006 May; 9(5):558-68. PubMed ID: 16643301 [TBL] [Abstract][Full Text] [Related]
3. Humic substances-part 7: the biogeochemistry of dissolved organic carbon and its interactions with climate change. Porcal P; Koprivnjak JF; Molot LA; Dillon PJ Environ Sci Pollut Res Int; 2009 Sep; 16(6):714-26. PubMed ID: 19462191 [TBL] [Abstract][Full Text] [Related]
4. Extensive Carbon Contribution of Inundated Terrestrial Plants to Zooplankton Biomass in a Eutrophic Lake. Tang Y; Wang S; Jin X; Zhou D; Lin Q; Liu Z; Zhang X; Dumont HJ Microb Ecol; 2023 Jul; 86(1):163-173. PubMed ID: 35916938 [TBL] [Abstract][Full Text] [Related]
5. Does ancient permafrost-derived organic carbon affect lake zooplankton growth? An experimental study on Daphnia magna. Su Y; Gan Y; Shi L; Li K; Liu Z Environ Pollut; 2022 May; 300():118968. PubMed ID: 35134428 [TBL] [Abstract][Full Text] [Related]
6. Nitrogen effects on the pelagic food web are modified by dissolved organic carbon. Deininger A; Faithfull CL; Bergström AK Oecologia; 2017 Aug; 184(4):901-916. PubMed ID: 28756491 [TBL] [Abstract][Full Text] [Related]
7. Whole-lake experiments reveal the fate of terrestrial particulate organic carbon in benthic food webs of shallow lakes. Scharnweber K; Syväranta J; Hilt S; Brauns M; Vanni MJ; Brothers S; Köhler J; Knezević-Jarić J; Mehner T Ecology; 2014 Jun; 95(6):1496-505. PubMed ID: 25039215 [TBL] [Abstract][Full Text] [Related]
8. Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Brett MT; Kainz MJ; Taipale SJ; Seshan H Proc Natl Acad Sci U S A; 2009 Dec; 106(50):21197-201. PubMed ID: 19934044 [TBL] [Abstract][Full Text] [Related]
9. Terrestrial subsidies to lake food webs: an experimental approach. Bartels P; Cucherousset J; Gudasz C; Jansson M; Karlsson J; Persson L; Premke K; Rubach A; Steger K; Tranvik LJ; Eklöv P Oecologia; 2012 Mar; 168(3):807-18. PubMed ID: 21971586 [TBL] [Abstract][Full Text] [Related]
10. Habitat structure determines resource use by zooplankton in temperate lakes. Francis TB; Schindler DE; Holtgrieve GW; Larson ER; Scheuerell MD; Semmens BX; Ward EJ Ecol Lett; 2011 Apr; 14(4):364-72. PubMed ID: 21314881 [TBL] [Abstract][Full Text] [Related]
12. Efficiency of crustacean zooplankton in transferring allochthonous carbon in a boreal lake. Grosbois G; Vachon D; Del Giorgio PA; Rautio M Ecology; 2020 Jun; 101(6):e03013. PubMed ID: 32068250 [TBL] [Abstract][Full Text] [Related]
13. Terrestrial carbon is a resource, but not a subsidy, for lake zooplankton. Kelly PT; Solomon CT; Weidel BC; Jones SE Ecology; 2014 May; 95(5):1236-42. PubMed ID: 25000755 [TBL] [Abstract][Full Text] [Related]
14. Experimental whole-lake increase of dissolved organic carbon concentration produces unexpected increase in crustacean zooplankton density. Kelly PT; Craig N; Solomon CT; Weidel BC; Zwart JA; Jones SE Glob Chang Biol; 2016 Aug; 22(8):2766-75. PubMed ID: 26919470 [TBL] [Abstract][Full Text] [Related]
15. Fate of allochthonous dissolved organic carbon in lakes: a quantitative approach. Hanson PC; Hamilton DP; Stanley EH; Preston N; Langman OC; Kara EL PLoS One; 2011; 6(7):e21884. PubMed ID: 21779347 [TBL] [Abstract][Full Text] [Related]
16. Stable isotope analysis of the origins of zooplankton carbon in lakes of differing trophic state. Grey J; Jones RI; Sleep D Oecologia; 2000 May; 123(2):232-240. PubMed ID: 28308728 [TBL] [Abstract][Full Text] [Related]
17. Response of plankton to nutrients, planktivory and terrestrial organic matter: a model analysis of whole-lake experiments. Carpenter SR; Cole JJ; Pace ML; Wilkinson GM Ecol Lett; 2016 Mar; 19(3):230-9. PubMed ID: 26689608 [TBL] [Abstract][Full Text] [Related]
18. Terrestrial diet influences mercury bioaccumulation in zooplankton and macroinvertebrates in lakes with differing dissolved organic carbon concentrations. Wu P; Kainz M; Åkerblom S; Bravo AG; Sonesten L; Branfireun B; Deininger A; Bergström AK; Bishop K Sci Total Environ; 2019 Jun; 669():821-832. PubMed ID: 30897439 [TBL] [Abstract][Full Text] [Related]
19. Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Pace ML; Cole JJ; Carpenter SR; Kitchell JF; Hodgson JR; Van De Bogert MC; Bade DL; Kritzberg ES; Bastviken D Nature; 2004 Jan; 427(6971):240-3. PubMed ID: 14724637 [TBL] [Abstract][Full Text] [Related]
20. Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing model. Solomon CT; Carpenter SR; Clayton MK; Cole JJ; Coloso JJ; Pace ML; Zanden MJ; Weidel BC Ecology; 2011 May; 92(5):1115-25. PubMed ID: 21661572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]