These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 22761820)
1. Predicting candidate genes based on combined network topological features: a case study in coronary artery disease. Zhang L; Li X; Tai J; Li W; Chen L PLoS One; 2012; 7(6):e39542. PubMed ID: 22761820 [TBL] [Abstract][Full Text] [Related]
2. Identification of susceptibility modules for coronary artery disease using a genome wide integrated network analysis. Duan S; Luo X; Dong C Gene; 2013 Dec; 531(2):347-54. PubMed ID: 23994195 [TBL] [Abstract][Full Text] [Related]
3. Vavien: an algorithm for prioritizing candidate disease genes based on topological similarity of proteins in interaction networks. Erten S; Bebek G; Koyutürk M J Comput Biol; 2011 Nov; 18(11):1561-74. PubMed ID: 22035267 [TBL] [Abstract][Full Text] [Related]
4. Identification of key genes and crucial modules associated with coronary artery disease by bioinformatics analysis. Zhang X; Cheng X; Liu H; Zheng C; Rao K; Fang Y; Zhou H; Xiong S Int J Mol Med; 2014 Sep; 34(3):863-9. PubMed ID: 24969630 [TBL] [Abstract][Full Text] [Related]
5. Prioritization of candidate disease genes by combining topological similarity and semantic similarity. Liu B; Jin M; Zeng P J Biomed Inform; 2015 Oct; 57():1-5. PubMed ID: 26173039 [TBL] [Abstract][Full Text] [Related]
6. Analysis of Differentially Expressed Genes in Coronary Artery Disease by Integrated Microarray Analysis. Balashanmugam MV; Shivanandappa TB; Nagarethinam S; Vastrad B; Vastrad C Biomolecules; 2019 Dec; 10(1):. PubMed ID: 31881747 [TBL] [Abstract][Full Text] [Related]
7. Integrated systems approach identifies risk regulatory pathways and key regulators in coronary artery disease. Zhang Y; Liu D; Wang L; Wang S; Yu X; Dai E; Liu X; Luo S; Jiang W J Mol Med (Berl); 2015 Dec; 93(12):1381-90. PubMed ID: 26208504 [TBL] [Abstract][Full Text] [Related]
8. Prioritization of potential candidate disease genes by topological similarity of protein-protein interaction network and phenotype data. Luo J; Liang S J Biomed Inform; 2015 Feb; 53():229-36. PubMed ID: 25460206 [TBL] [Abstract][Full Text] [Related]
9. Network-based prediction and knowledge mining of disease genes. Carson MB; Lu H BMC Med Genomics; 2015; 8 Suppl 2(Suppl 2):S9. PubMed ID: 26043920 [TBL] [Abstract][Full Text] [Related]
10. Uncovering the differentially expressed genes and pathways involved in the progression of stable coronary artery disease to acute myocardial infarction using bioinformatics analysis. Xiao SJ; Zhou YF; Wu Q; Ma WR; Chen ML; Pan DF Eur Rev Med Pharmacol Sci; 2021 Jan; 25(1):301-312. PubMed ID: 33506919 [TBL] [Abstract][Full Text] [Related]
11. NetCAD: a network analysis tool for coronary artery disease-associated PPI network. Ren G; Liu Z Bioinformatics; 2013 Jan; 29(2):279-80. PubMed ID: 23162052 [TBL] [Abstract][Full Text] [Related]
12. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network. Khunlertgit N; Yoon BJ BMC Bioinformatics; 2016 Oct; 17(Suppl 13):351. PubMed ID: 27766944 [TBL] [Abstract][Full Text] [Related]
13. Bioinformatics analysis identifies potential diagnostic signatures for coronary artery disease. Zhang D; Guan L; Li X J Int Med Res; 2020 Dec; 48(12):300060520979856. PubMed ID: 33356708 [TBL] [Abstract][Full Text] [Related]
14. Candidate gene prioritization for non-communicable diseases based on functional information: Case studies. Li W; Zhang Y; He Y; Wang Y; Guo S; Zhao X; Feng Y; Song Z; Zou Y; He W; Chen L J Biomed Inform; 2019 May; 93():103155. PubMed ID: 30902596 [TBL] [Abstract][Full Text] [Related]
15. Coronary artery disease associated specific modules and feature genes revealed by integrative methods of WGCNA, MetaDE and machine learning. Wang Y; Liu T; Liu Y; Chen J; Xin B; Wu M; Cui W Gene; 2019 Aug; 710():122-130. PubMed ID: 31075415 [TBL] [Abstract][Full Text] [Related]
16. MMP9, CXCR1, TLR6, and MPO participant in the progression of coronary artery disease. Wang C; Li Q; Yang H; Gao C; Du Q; Zhang C; Zhu L; Li Q J Cell Physiol; 2020 Nov; 235(11):8283-8292. PubMed ID: 32052443 [TBL] [Abstract][Full Text] [Related]
17. A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network. You ZH; Yin Z; Han K; Huang DS; Zhou X BMC Bioinformatics; 2010 Jun; 11():343. PubMed ID: 20573270 [TBL] [Abstract][Full Text] [Related]
18. Novel therapeutics for coronary artery disease from genome-wide association study data. Grover MP; Ballouz S; Mohanasundaram KA; George RA; Goscinski A; Crowley TM; Sherman CD; Wouters MA BMC Med Genomics; 2015; 8 Suppl 2(Suppl 2):S1. PubMed ID: 26044129 [TBL] [Abstract][Full Text] [Related]
19. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression. Zhang SW; Shao DD; Zhang SY; Wang YB Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957 [TBL] [Abstract][Full Text] [Related]
20. Development of a blood-based gene expression algorithm for assessment of obstructive coronary artery disease in non-diabetic patients. Elashoff MR; Wingrove JA; Beineke P; Daniels SE; Tingley WG; Rosenberg S; Voros S; Kraus WE; Ginsburg GS; Schwartz RS; Ellis SG; Tahirkheli N; Waksman R; McPherson J; Lansky AJ; Topol EJ BMC Med Genomics; 2011 Mar; 4():26. PubMed ID: 21443790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]