BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 22761843)

  • 1. Mathematical modeling of human glioma growth based on brain topological structures: study of two clinical cases.
    Suarez C; Maglietti F; Colonna M; Breitburd K; Marshall G
    PLoS One; 2012; 7(6):e39616. PubMed ID: 22761843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantitative model for differential motility of gliomas in grey and white matter.
    Swanson KR; Alvord EC; Murray JD
    Cell Prolif; 2000 Oct; 33(5):317-29. PubMed ID: 11063134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulating PDGF-Driven Glioma Growth and Invasion in an Anatomically Accurate Brain Domain.
    Massey SC; Rockne RC; Hawkins-Daarud A; Gallaher J; Anderson ARA; Canoll P; Swanson KR
    Bull Math Biol; 2018 May; 80(5):1292-1309. PubMed ID: 28842831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A complete mathematical study of a 3D model of heterogeneous and anisotropic glioma evolution.
    Roniotis A; Marias K; Sakkalis V; Tsibidis GD; Zervakis M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2807-10. PubMed ID: 19964265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of glioma growth using modified reaction-diffusion equation on brain MR images.
    Zhang Y; Liu PX; Hou W
    Comput Methods Programs Biomed; 2022 Dec; 227():107233. PubMed ID: 36375418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical modelling of microtumour infiltration based on in vitro experiments.
    Luján E; Guerra LN; Soba A; Visacovsky N; Gandía D; Calvo JC; Suárez C
    Integr Biol (Camb); 2016 Aug; 8(8):879-85. PubMed ID: 27466056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain glioma growth model using reaction-diffusion equation with viscous stress tensor on brain MR images.
    Yuan J; Liu L
    Magn Reson Imaging; 2016 Feb; 34(2):114-9. PubMed ID: 26518060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An inverse problem formulation for parameter estimation of a reaction-diffusion model of low grade gliomas.
    Gholami A; Mang A; Biros G
    J Math Biol; 2016 Jan; 72(1-2):409-33. PubMed ID: 25963601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical modeling of efficient protocols to control glioma growth.
    Branco JR; Ferreira JA; de Oliveira P
    Math Biosci; 2014 Sep; 255():83-90. PubMed ID: 25057777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glioma growth modeling based on the effect of vital nutrients and metabolic products.
    Papadogiorgaki M; Koliou P; Zervakis ME
    Med Biol Eng Comput; 2018 Sep; 56(9):1683-1697. PubMed ID: 29516334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor invasion margin on the Riemannian space of brain fibers.
    Mosayebi P; Cobzas D; Murtha A; Jagersand M
    Med Image Anal; 2012 Feb; 16(2):361-73. PubMed ID: 22154876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging.
    Jbabdi S; Mandonnet E; Duffau H; Capelle L; Swanson KR; Pélégrini-Issac M; Guillevin R; Benali H
    Magn Reson Med; 2005 Sep; 54(3):616-24. PubMed ID: 16088879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the role of angiogenesis in malignant progression of gliomas: in silico modeling integrates imaging and histology.
    Swanson KR; Rockne RC; Claridge J; Chaplain MA; Alvord EC; Anderson AR
    Cancer Res; 2011 Dec; 71(24):7366-75. PubMed ID: 21900399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects.
    Hogea C; Davatzikos C; Biros G
    J Math Biol; 2008 Jun; 56(6):793-825. PubMed ID: 18026731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion.
    Swanson KR; Bridge C; Murray JD; Alvord EC
    J Neurol Sci; 2003 Dec; 216(1):1-10. PubMed ID: 14607296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting in vivo glioma growth with the reaction diffusion equation constrained by quantitative magnetic resonance imaging data.
    Hormuth DA; Weis JA; Barnes SL; Miga MI; Rericha EC; Quaranta V; Yankeelov TE
    Phys Biol; 2015 Jun; 12(4):046006. PubMed ID: 26040472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling glioma growth and mass effect in 3D MR images of the brain.
    Hogea C; Davatzikos C; Biros G
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):642-50. PubMed ID: 18051113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical model of pre-diagnostic glioma growth.
    Sturrock M; Hao W; Schwartzbaum J; Rempala GA
    J Theor Biol; 2015 Sep; 380():299-308. PubMed ID: 26073722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extrapolating glioma invasion margin in brain magnetic resonance images: suggesting new irradiation margins.
    Konukoglu E; Clatz O; Bondiau PY; Delingette H; Ayache N
    Med Image Anal; 2010 Apr; 14(2):111-25. PubMed ID: 20042359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introduction of a standardized multimodality image protocol for navigation-guided surgery of suspected low-grade gliomas.
    Mert A; Kiesel B; Wöhrer A; Martínez-Moreno M; Minchev G; Furtner J; Knosp E; Wolfsberger S; Widhalm G
    Neurosurg Focus; 2015 Jan; 38(1):E4. PubMed ID: 25552284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.