BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 22761849)

  • 1. Functional importance of the DNA binding activity of Candida albicans Czf1p.
    Petrovska I; Kumamoto CA
    PLoS One; 2012; 7(6):e39624. PubMed ID: 22761849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The morphogenetic regulator Czf1p is a DNA-binding protein that regulates white opaque switching in Candida albicans.
    Vinces MD; Kumamoto CA
    Microbiology (Reading); 2007 Sep; 153(Pt 9):2877-2884. PubMed ID: 17768232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional mapping of the Candida albicans Efg1 regulator.
    Noffz CS; Liedschulte V; Lengeler K; Ernst JF
    Eukaryot Cell; 2008 May; 7(5):881-93. PubMed ID: 18375615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of the Candida albicans morphogenesis regulator gene CZF1 and its regulation by Efg1p and Czf1p.
    Vinces MD; Haas C; Kumamoto CA
    Eukaryot Cell; 2006 May; 5(5):825-35. PubMed ID: 16682460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Invasive filamentous growth of Candida albicans is promoted by Czf1p-dependent relief of Efg1p-mediated repression.
    Giusani AD; Vinces M; Kumamoto CA
    Genetics; 2002 Apr; 160(4):1749-53. PubMed ID: 11973327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p-regulatory networks.
    Setiadi ER; Doedt T; Cottier F; Noffz C; Ernst JF
    J Mol Biol; 2006 Aug; 361(3):399-411. PubMed ID: 16854431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rap1 in Candida albicans: an unusual structural organization and a critical function in suppressing telomere recombination.
    Yu EY; Yen WF; Steinberg-Neifach O; Lue NF
    Mol Cell Biol; 2010 Mar; 30(5):1254-68. PubMed ID: 20008550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi.
    Stoldt VR; Sonneborn A; Leuker CE; Ernst JF
    EMBO J; 1997 Apr; 16(8):1982-91. PubMed ID: 9155024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comprehensive functional portrait of two heat shock factor-type transcriptional regulators involved in Candida albicans morphogenesis and virulence.
    Znaidi S; Nesseir A; Chauvel M; Rossignol T; d'Enfert C
    PLoS Pathog; 2013 Aug; 9(8):e1003519. PubMed ID: 23966855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mss11, a transcriptional activator, is required for hyphal development in Candida albicans.
    Su C; Li Y; Lu Y; Chen J
    Eukaryot Cell; 2009 Nov; 8(11):1780-91. PubMed ID: 19734367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans.
    Cao F; Lane S; Raniga PP; Lu Y; Zhou Z; Ramon K; Chen J; Liu H
    Mol Biol Cell; 2006 Jan; 17(1):295-307. PubMed ID: 16267276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normal adaptation of Candida albicans to the murine gastrointestinal tract requires Efg1p-dependent regulation of metabolic and host defense genes.
    Pierce JV; Dignard D; Whiteway M; Kumamoto CA
    Eukaryot Cell; 2013 Jan; 12(1):37-49. PubMed ID: 23125349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of cell cycle-regulated, putative hyphal genes in Candida albicans.
    Gordân R; Pyne S; Bulyk ML
    Pac Symp Biocomput; 2012; ():299-310. PubMed ID: 22174285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target specificity of the Candida albicans Efg1 regulator.
    Lassak T; Schneider E; Bussmann M; Kurtz D; Manak JR; Srikantha T; Soll DR; Ernst JF
    Mol Microbiol; 2011 Nov; 82(3):602-18. PubMed ID: 21923768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The basic helix-loop-helix transcription factor Cph2 regulates hyphal development in Candida albicans partly via TEC1.
    Lane S; Zhou S; Pan T; Dai Q; Liu H
    Mol Cell Biol; 2001 Oct; 21(19):6418-28. PubMed ID: 11533231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of Zinc-responsive transcription factor Csr1 in filamentous growth of the pathogenic Yeast Candida albicans.
    Kim MJ; Kil M; Jung JH; Kim J
    J Microbiol Biotechnol; 2008 Feb; 18(2):242-7. PubMed ID: 18309267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlamydospore formation in Candida albicans requires the Efg1p morphogenetic regulator.
    Sonneborn A; Bockmühl DP; Ernst JF
    Infect Immun; 1999 Oct; 67(10):5514-7. PubMed ID: 10496941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A GATA transcription factor recruits Hda1 in response to reduced Tor1 signaling to establish a hyphal chromatin state in Candida albicans.
    Lu Y; Su C; Liu H
    PLoS Pathog; 2012; 8(4):e1002663. PubMed ID: 22536157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation of the Efg1p morphogenetic pathway in Candida albicans by negative autoregulation and PKA-dependent repression of the EFG1 gene.
    Tebarth B; Doedt T; Krishnamurthy S; Weide M; Monterola F; Dominguez A; Ernst JF
    J Mol Biol; 2003 Jun; 329(5):949-62. PubMed ID: 12798685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene.
    Martchenko M; Alarco AM; Harcus D; Whiteway M
    Mol Biol Cell; 2004 Feb; 15(2):456-67. PubMed ID: 14617819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.