These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 22762185)
21. Thermodynamic stability of carbonic anhydrase: measurements of binding affinity and stoichiometry using ThermoFluor. Matulis D; Kranz JK; Salemme FR; Todd MJ Biochemistry; 2005 Apr; 44(13):5258-66. PubMed ID: 15794662 [TBL] [Abstract][Full Text] [Related]
22. Kinetic studies of pea carbonic anhydrase. Johansson IM; Forsman C Eur J Biochem; 1993 Dec; 218(2):439-46. PubMed ID: 8269932 [TBL] [Abstract][Full Text] [Related]
23. Structural and functional changes of bovine carbonic anhydrase as a consequence of temperature. Sarraf NS; Saboury AA; Ranjbar B; Moosavi-Movahedi AA Acta Biochim Pol; 2004; 51(3):665-71. PubMed ID: 15448728 [TBL] [Abstract][Full Text] [Related]
24. Two slow stages in refolding of bovine carbonic anhydrase B are due to proline isomerization. Semisotnov GV; Uversky VN; Sokolovsky IV; Gutin AM; Razgulyaev OI; Rodionova NA J Mol Biol; 1990 Jun; 213(3):561-8. PubMed ID: 2112610 [TBL] [Abstract][Full Text] [Related]
25. Reversible denaturation of carbonic anhydrase provides a method for its adsorptive immobilization. Azari F; Nemat-Gorgani M Biotechnol Bioeng; 1999 Jan; 62(2):193-9. PubMed ID: 10099529 [TBL] [Abstract][Full Text] [Related]
26. Immobilization of carbonic anhydrase on spherical SBA-15 for hydration and sequestration of CO2. Vinoba M; Bhagiyalakshmi M; Jeong SK; Yoon YI; Nam SC Colloids Surf B Biointerfaces; 2012 Feb; 90():91-6. PubMed ID: 22024402 [TBL] [Abstract][Full Text] [Related]
27. Enhancement of catalytic efficiency by the combination of site-specific mutations in a carbonic anhydrase-related protein. Elleby B; Sjöblom B; Tu C; Silverman DN; Lindskog S Eur J Biochem; 2000 Oct; 267(19):5908-15. PubMed ID: 10998050 [TBL] [Abstract][Full Text] [Related]
28. Metal binding specificity in carbonic anhydrase is influenced by conserved hydrophobic core residues. Hunt JA; Ahmed M; Fierke CA Biochemistry; 1999 Jul; 38(28):9054-62. PubMed ID: 10413479 [TBL] [Abstract][Full Text] [Related]
29. The structure of a tetrameric α-carbonic anhydrase from Thermovibrio ammonificans reveals a core formed around intermolecular disulfides that contribute to its thermostability. James P; Isupov MN; Sayer C; Saneei V; Berg S; Lioliou M; Kotlar HK; Littlechild JA Acta Crystallogr D Biol Crystallogr; 2014 Oct; 70(Pt 10):2607-18. PubMed ID: 25286845 [TBL] [Abstract][Full Text] [Related]
30. GdnHCl-induced unfolding intermediate in the mitochondrial carbonic anhydrase VA. Idrees D; Prakash A; Haque MA; Islam A; Hassan MI; Ahmad F Int J Biol Macromol; 2016 Oct; 91():1151-60. PubMed ID: 27365118 [TBL] [Abstract][Full Text] [Related]
31. Influence of the Zn(II) cofactor on the refolding of bovine carbonic anhydrase after denaturation with sodium dodecyl sulfate. Gudiksen KL; Urbach AR; Gitlin I; Yang J; Vazquez JA; Costello CE; Whitesides GM Anal Chem; 2004 Dec; 76(24):7151-61. PubMed ID: 15595855 [TBL] [Abstract][Full Text] [Related]
32. Folding and stability of human carbonic anhydrase II. Carlsson U; Jonsson BH EXS; 2000; (90):241-59. PubMed ID: 11268519 [No Abstract] [Full Text] [Related]
33. Acid denaturation of bovine carbonic anhydrase B. Wong KP; Hamlin LM Biochemistry; 1974 Jun; 13(13):2678-83. PubMed ID: 4211219 [No Abstract] [Full Text] [Related]
34. The molten globular intermediate form in the folding pathway of human carbonic anhydrase B. Jagannadham MV; Balasubramanian D FEBS Lett; 1985 Sep; 188(2):326-30. PubMed ID: 3928403 [TBL] [Abstract][Full Text] [Related]
35. Noncooperative temperature melting of a globular protein without specific tertiary structure: acid form of bovine carbonic anhydrase B. Brazhnikov EV; Chirgadze YuN ; Dolgikh DA; Ptitsyn OB Biopolymers; 1985 Oct; 24(10):1899-907. PubMed ID: 3935185 [No Abstract] [Full Text] [Related]
36. Conformational and thermodynamic characterization of the molten globule state occurring during unfolding of cytochromes-c by weak salt denaturants. Qureshi SH; Moza B; Yadav S; Ahmad F Biochemistry; 2003 Feb; 42(6):1684-95. PubMed ID: 12578383 [TBL] [Abstract][Full Text] [Related]
37. Kinetic measurements of protein conformation in a microchip. Kerby MB; Lee J; Ziperstein J; Tripathi A Biotechnol Prog; 2006; 22(5):1416-25. PubMed ID: 17022682 [TBL] [Abstract][Full Text] [Related]
38. Cholesterol increases the thermal stability of the Ca2+/Mg(2+)-ATPase of cardiac microsomes. Ortega A; Santiago-García J; Mas-Oliva J; Lepock JR Biochim Biophys Acta; 1996 Aug; 1283(1):45-50. PubMed ID: 8765093 [TBL] [Abstract][Full Text] [Related]
39. The role of metal ions in the radiosensitivity of metalloproteins. Model experiments with bovine carbonic anhydrase. Redpath JL; Santus R; Ovadia J; Grossweiner LI Int J Radiat Biol Relat Stud Phys Chem Med; 1975 Sep; 28(3):243-53. PubMed ID: 811579 [TBL] [Abstract][Full Text] [Related]
40. Multiparameter kinetic study on the unfolding and refolding of bovine carbonic anhydrase B. McCoy LF; Rowe ES; Wong KP Biochemistry; 1980 Oct; 19(21):4738-43. PubMed ID: 6775693 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]