These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 22762479)
1. Short- and long-term efficiency of carboxymethylcellulose (CMC) to prevent crystal formation in South African wine. Greeff AE; Robillard B; du Toit WJ Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(9):1374-85. PubMed ID: 22762479 [TBL] [Abstract][Full Text] [Related]
2. Comparison between different types of carboxylmethylcellulose and other oenological additives used for white wine tartaric stabilization. Guise R; Filipe-Ribeiro L; Nascimento D; Bessa O; Nunes FM; Cosme F Food Chem; 2014 Aug; 156():250-7. PubMed ID: 24629965 [TBL] [Abstract][Full Text] [Related]
3. Effect of different carboxymethyl cellulose structure parameters on tartrates stability of red wine: viscosity and degree of substitution. Ding H; Hou R; Li Y; Zhang B; Zhao B; Liu K Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2020 Jul; 37(7):1099-1109. PubMed ID: 32348199 [TBL] [Abstract][Full Text] [Related]
4. Efficiency of carboxymethylcellulose in red wine tartaric stability: Effect on wine phenolic composition, chromatic characteristics and colouring matter stability. Filipe-Ribeiro L; Milheiro J; Guise R; Vilamarim R; Fraga JB; Martins-Gomes C; Nunes FM; Cosme F Food Chem; 2021 Oct; 360():129996. PubMed ID: 34010762 [TBL] [Abstract][Full Text] [Related]
5. Prevention of Tartrate Crystallization in Wine by Hydrocolloids: The Mechanism Studied by Dynamic Light Scattering. Lankhorst PP; Voogt B; Tuinier R; Lefol B; Pellerin P; Virone C J Agric Food Chem; 2017 Oct; 65(40):8923-8929. PubMed ID: 28972743 [TBL] [Abstract][Full Text] [Related]
6. Validation of a rapid conductimetric test for the measurement of wine tartaric stability. Bosso A; Motta S; Petrozziello M; Guaita M; Asproudi A; Panero L Food Chem; 2016 Dec; 212():821-7. PubMed ID: 27374600 [TBL] [Abstract][Full Text] [Related]
7. Rationale for Haze Formation after Carboxymethyl Cellulose (CMC) Addition to Red Wine. Sommer S; Dickescheid C; Harbertson JF; Fischer U; Cohen SD J Agric Food Chem; 2016 Sep; 64(36):6879-87. PubMed ID: 27571332 [TBL] [Abstract][Full Text] [Related]
8. Use of polyaspartate as inhibitor of tartaric precipitations in wines. Bosso A; Panero L; Petrozziello M; Sollazzo M; Asproudi A; Motta S; Guaita M Food Chem; 2015 Oct; 185():1-6. PubMed ID: 25952834 [TBL] [Abstract][Full Text] [Related]
9. Wine Volatilome as Affected by Tartaric Stabilization Treatments: Cold Stabilization, Carboxymethylcellulose and Metatartaric Acid. Cosme F; Oliveira R; Filipe-Ribeiro L; Nunes FM Foods; 2024 Aug; 13(17):. PubMed ID: 39272500 [TBL] [Abstract][Full Text] [Related]
10. Use of potassium polyaspartate for stabilization of potassium bitartrate in wines: influence on colloidal stability and interactions with other additives and enological practices. Bosso A; Motta S; Panero L; Lucini S; Guaita M J Food Sci; 2020 Aug; 85(8):2406-2415. PubMed ID: 32671853 [TBL] [Abstract][Full Text] [Related]
11. A novel solution to tartrate instability in white wines. Dabare PR; Reilly T; Mierczynski P; Bindon K; Vasilev K; Mierczynska-Vasilev A Food Chem; 2023 Oct; 422():136159. PubMed ID: 37146354 [TBL] [Abstract][Full Text] [Related]
12. Polyphenol-Protein-Polysaccharide Interactions in the Presence of Carboxymethyl Cellulose (CMC) in Wine-Like Model Systems. Sommer S; Weber F; Harbertson JF J Agric Food Chem; 2019 Jul; 67(26):7428-7434. PubMed ID: 31187991 [TBL] [Abstract][Full Text] [Related]
13. Efficiency of Alginic Acid, Sodium Carboxymethylcellulose, and Potassium Polyaspartate as Calcium Tartrate Stabilizers in Wines. Cosme F; Filipe-Ribeiro L; Coixão A; Bezerra M; Nunes FM Foods; 2024 Jun; 13(12):. PubMed ID: 38928821 [TBL] [Abstract][Full Text] [Related]
14. Influence of different maceration time and temperatures on total phenols, colour and sensory properties of Cabernet Sauvignon wines. Şener H; Yildirim HK Food Sci Technol Int; 2013 Dec; 19(6):523-33. PubMed ID: 23703104 [TBL] [Abstract][Full Text] [Related]
15. Use of Commercial Dry Yeast Products Rich in Mannoproteins for White and Rosé Sparkling Wine Elaboration. Pérez-Magariño S; Martínez-Lapuente L; Bueno-Herrera M; Ortega-Heras M; Guadalupe Z; Ayestarán B J Agric Food Chem; 2015 Jun; 63(23):5670-81. PubMed ID: 26027899 [TBL] [Abstract][Full Text] [Related]
16. DCMC as a Promising Alternative to Bentonite in White Wine Stabilization. Impact on Protein Stability and Wine Aromatic Fraction. Saracino F; Brinco J; Gago D; Gomes da Silva M; Boavida Ferreira R; Ricardo-da-Silva J; Chagas R; Ferreira LM Molecules; 2021 Oct; 26(20):. PubMed ID: 34684769 [TBL] [Abstract][Full Text] [Related]
17. Use of Fourier transform infrared spectroscopy to create models forecasting the tartaric stability of wines. Malacarne M; Bergamo L; Bertoldi D; Nicolini G; Larcher R Talanta; 2013 Dec; 117():505-10. PubMed ID: 24209373 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous determination of tartaric acid and potassium in wines using a multicommuted flow system with dialysis. Oliveira SM; Lopes TI; Tóth IV; Rangel AO Talanta; 2010 Jun; 81(4-5):1735-41. PubMed ID: 20441966 [TBL] [Abstract][Full Text] [Related]
19. Quantification method and organoleptic impact of added carboxymethyl cellulose to dry white wine. Salagoïty MH; Guyon F; René L; Gaillard L; Lagrèze C; Domec A; Baudouin M; Médina B Anal Methods; 2011 Feb; 3(2):380-384. PubMed ID: 32938040 [TBL] [Abstract][Full Text] [Related]
20. Phenolic compositions of 50 and 30 year sequences of Australian red wines: the impact of wine age. McRae JM; Dambergs RG; Kassara S; Parker M; Jeffery DW; Herderich MJ; Smith PA J Agric Food Chem; 2012 Oct; 60(40):10093-102. PubMed ID: 22967212 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]