These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 2276264)

  • 1. Computer analysis of the main parameters extrapolated from the human intracranial basal artery blood flow.
    Ursino M
    Comput Biomed Res; 1990 Dec; 23(6):542-59. PubMed ID: 2276264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study.
    Ursino M; Giulioni M; Lodi CA
    J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative assessment of cerebral autoregulation from transcranial Doppler pulsatility: a computer simulation study.
    Ursino M; Giulioni M
    Med Eng Phys; 2003 Oct; 25(8):655-66. PubMed ID: 12900181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcranial Doppler pulsatility index: not an accurate method to assess intracranial pressure.
    Behrens A; Lenfeldt N; Ambarki K; Malm J; Eklund A; Koskinen LO
    Neurosurgery; 2010 Jun; 66(6):1050-7. PubMed ID: 20495421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics.
    Ursino M; Lodi CA
    J Appl Physiol (1985); 1997 Apr; 82(4):1256-69. PubMed ID: 9104864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlations among intracranial pulsatility, intracranial hemodynamics, and transcranial Doppler wave form: literature review and hypothesis for future studies.
    Giulioni M; Ursino M; Alvisi C
    Neurosurgery; 1988 May; 22(5):807-12. PubMed ID: 3288898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical study of human intracranial hydrodynamics. Part 1--The cerebrospinal fluid pulse pressure.
    Ursino M
    Ann Biomed Eng; 1988; 16(4):379-401. PubMed ID: 3177984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel method for dynamic control of intracranial pressure.
    Luciano MG; Dombrowski SM; Qvarlander S; El-Khoury S; Yang J; Thyagaraj S; Loth F
    J Neurosurg; 2017 May; 126(5):1629-1640. PubMed ID: 27419825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction among autoregulation, CO2 reactivity, and intracranial pressure: a mathematical model.
    Ursino M; Lodi CA
    Am J Physiol; 1998 May; 274(5):H1715-28. PubMed ID: 9612384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of cerebral perfusion pressure and autoregulation on intracranial dynamics: a modeling study.
    Giulioni M; Ursino M
    Neurosurgery; 1996 Nov; 39(5):1005-14; discussion 1014-5. PubMed ID: 8905758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increase in transcranial Doppler pulsatility index does not indicate the lower limit of cerebral autoregulation.
    Richards HK; Czosnyka M; Whitehouse H; Pickard JD
    Acta Neurochir Suppl; 1998; 71():229-32. PubMed ID: 9779192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive intracranial compliance from MRI-based measurements of transcranial blood and CSF flows: indirect versus direct approach.
    Tain RW; Alperin N
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):544-51. PubMed ID: 19389680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracranial pulse pressure dynamics in patients with intracranial hypertension.
    Nornes H; Aaslid R; Lindegaard KF
    Acta Neurochir (Wien); 1977; 38(3-4):177-86. PubMed ID: 920303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mathematical model of the relationship between cerebral blood volume and intracranial pressure changes: the generation of plateau waves.
    Ursino M; Di Giammarco P
    Ann Biomed Eng; 1991; 19(1):15-42. PubMed ID: 2035909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of airway pressure changes on intracranial pressure (ICP) and the blood flow velocity in the middle cerebral artery (VMCA).
    Ludwig HC; Klingler M; Timmermann A; Weyland W; Mursch K; Reparon C; Markakis E
    Anasthesiol Intensivmed Notfallmed Schmerzther; 2000 Mar; 35(3):141-5. PubMed ID: 10768051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of pulsatile cerebral arterial blood volume based on transcranial doppler signals.
    Calviello LA; Zeiler FA; Donnelly J; Uryga A; de Riva N; Smielewski P; Czosnyka M
    Med Eng Phys; 2019 Dec; 74():23-32. PubMed ID: 31648880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical study of human intracranial hydrodynamics. Part 2--Simulation of clinical tests.
    Ursino M
    Ann Biomed Eng; 1988; 16(4):403-16. PubMed ID: 3177985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical Modelling of CSF Pulsatile Flow in Aqueduct Cerebri.
    Czosnyka Z; Kim DJ; Balédent O; Schmidt EA; Smielewski P; Czosnyka M
    Acta Neurochir Suppl; 2018; 126():233-236. PubMed ID: 29492567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired cerebral autoregulation in the newborn lamb during recovery from severe, prolonged hypoxia, combined with carotid artery and jugular vein ligation.
    Short BL; Walker LK; Traystman RJ
    Crit Care Med; 1994 Aug; 22(8):1262-8. PubMed ID: 8045146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP).
    Bellner J; Romner B; Reinstrup P; Kristiansson KA; Ryding E; Brandt L
    Surg Neurol; 2004 Jul; 62(1):45-51; discussion 51. PubMed ID: 15226070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.