BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 22762858)

  • 21. Diurnal regulation of SDG2 and JMJ14 by circadian clock oscillators orchestrates histone modification rhythms in Arabidopsis.
    Song Q; Huang TY; Yu HH; Ando A; Mas P; Ha M; Chen ZJ
    Genome Biol; 2019 Aug; 20(1):170. PubMed ID: 31429787
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ubiquitin-specific proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering regulation in Arabidopsis.
    Cui X; Lu F; Li Y; Xue Y; Kang Y; Zhang S; Qiu Q; Cui X; Zheng S; Liu B; Xu X; Cao X
    Plant Physiol; 2013 Jun; 162(2):897-906. PubMed ID: 23645632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Involvement of Arabidopsis histone acetyltransferase HAC family genes in the ethylene signaling pathway.
    Li C; Xu J; Li J; Li Q; Yang H
    Plant Cell Physiol; 2014 Feb; 55(2):426-35. PubMed ID: 24287137
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Seed dormancy cycling in Arabidopsis: chromatin remodelling and regulation of DOG1 in response to seasonal environmental signals.
    Footitt S; Müller K; Kermode AR; Finch-Savage WE
    Plant J; 2015 Feb; 81(3):413-25. PubMed ID: 25439058
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The atrzf1 mutation of the novel RING-type E3 ubiquitin ligase increases proline contents and enhances drought tolerance in Arabidopsis.
    Ju HW; Min JH; Chung MS; Kim CS
    Plant Sci; 2013 Apr; 203-204():1-7. PubMed ID: 23415322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactive and noninteractive roles of histone H2B monoubiquitination and H3K36 methylation in the regulation of active gene transcription and control of plant growth and development.
    Zhao W; Neyt P; Van Lijsebettens M; Shen WH; Berr A
    New Phytol; 2019 Jan; 221(2):1101-1116. PubMed ID: 30156703
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock.
    Perales M; Más P
    Plant Cell; 2007 Jul; 19(7):2111-23. PubMed ID: 17616736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ZRF1 Chromatin Regulators Have Polycomb Silencing and Independent Roles in Development.
    Feng J; Chen D; Berr A; Shen WH
    Plant Physiol; 2016 Nov; 172(3):1746-1759. PubMed ID: 27630184
    [TBL] [Abstract][Full Text] [Related]  

  • 29. JMJD5 Functions in concert with TOC1 in the arabidopsis circadian system.
    Jones MA; Harmer S
    Plant Signal Behav; 2011 Mar; 6(3):445-8. PubMed ID: 21358285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of plant CBP/p300-like genes in the regulation of flowering time.
    Han SK; Song JD; Noh YS; Noh B
    Plant J; 2007 Jan; 49(1):103-14. PubMed ID: 17144897
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of a novel E3 ubiquitin ligase that is required for suppression of premature senescence in Arabidopsis.
    Raab S; Drechsel G; Zarepour M; Hartung W; Koshiba T; Bittner F; Hoth S
    Plant J; 2009 Jul; 59(1):39-51. PubMed ID: 19309463
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutations in the Arabidopsis SWC6 gene, encoding a component of the SWR1 chromatin remodelling complex, accelerate flowering time and alter leaf and flower development.
    Lázaro A; Gómez-Zambrano A; López-González L; Piñeiro M; Jarillo JA
    J Exp Bot; 2008; 59(3):653-66. PubMed ID: 18296430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chromatin remodeling and alternative splicing: pre- and post-transcriptional regulation of the Arabidopsis circadian clock.
    Henriques R; Mas P
    Semin Cell Dev Biol; 2013 May; 24(5):399-406. PubMed ID: 23499867
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional implication of the MYB transcription factor RVE8/LCL5 in the circadian control of histone acetylation.
    Farinas B; Mas P
    Plant J; 2011 Apr; 66(2):318-29. PubMed ID: 21205033
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A chromatin-dependent mechanism regulates gene expression at the core of the Arabidopsis circadian clock.
    Malapeira J; Mas P
    Plant Signal Behav; 2013 May; 8(5):e24079. PubMed ID: 23470726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcription-dependence of histone H3 lysine 27 trimethylation at the Arabidopsis polycomb target gene FLC.
    Buzas DM; Robertson M; Finnegan EJ; Helliwell CA
    Plant J; 2011 Mar; 65(6):872-81. PubMed ID: 21276103
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro specificities of Arabidopsis co-activator histone acetyltransferases: implications for histone hyperacetylation in gene activation.
    Earley KW; Shook MS; Brower-Toland B; Hicks L; Pikaard CS
    Plant J; 2007 Nov; 52(4):615-26. PubMed ID: 17877703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Arabidopsis STRESS RESPONSE SUPPRESSOR DEAD-box RNA helicases are nucleolar- and chromocenter-localized proteins that undergo stress-mediated relocalization and are involved in epigenetic gene silencing.
    Khan A; Garbelli A; Grossi S; Florentin A; Batelli G; Acuna T; Zolla G; Kaye Y; Paul LK; Zhu JK; Maga G; Grafi G; Barak S
    Plant J; 2014 Jul; 79(1):28-43. PubMed ID: 24724701
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ordered changes in histone modifications at the core of the Arabidopsis circadian clock.
    Malapeira J; Khaitova LC; Mas P
    Proc Natl Acad Sci U S A; 2012 Dec; 109(52):21540-5. PubMed ID: 23236129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Partners in time: EARLY BIRD associates with ZEITLUPE and regulates the speed of the Arabidopsis clock.
    Johansson M; McWatters HG; Bakó L; Takata N; Gyula P; Hall A; Somers DE; Millar AJ; Eriksson ME
    Plant Physiol; 2011 Apr; 155(4):2108-22. PubMed ID: 21300918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.