These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22762862)

  • 1. The absence of longitudinal data limits the accuracy of high-throughput clinical phenotyping for identifying type 2 diabetes mellitus subjects.
    Wei WQ; Leibson CL; Ransom JE; Kho AN; Chute CG
    Int J Med Inform; 2013 Apr; 82(4):239-47. PubMed ID: 22762862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of data fragmentation across healthcare centers on the accuracy of a high-throughput clinical phenotyping algorithm for specifying subjects with type 2 diabetes mellitus.
    Wei WQ; Leibson CL; Ransom JE; Kho AN; Caraballo PJ; Chai HS; Yawn BP; Pacheco JA; Chute CG
    J Am Med Inform Assoc; 2012; 19(2):219-24. PubMed ID: 22249968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Type 2 Diabetes Mellitus Phenotyping Framework Using Expert Knowledge and Machine Learning Approach.
    Kagawa R; Kawazoe Y; Ida Y; Shinohara E; Tanaka K; Imai T; Ohe K
    J Diabetes Sci Technol; 2017 Jul; 11(4):791-799. PubMed ID: 27932531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A machine learning-based framework to identify type 2 diabetes through electronic health records.
    Zheng T; Xie W; Xu L; He X; Zhang Y; You M; Yang G; Chen Y
    Int J Med Inform; 2017 Jan; 97():120-127. PubMed ID: 27919371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validating an ontology-based algorithm to identify patients with type 2 diabetes mellitus in electronic health records.
    Rahimi A; Liaw ST; Taggart J; Ray P; Yu H
    Int J Med Inform; 2014 Oct; 83(10):768-78. PubMed ID: 25011429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diabetes and hypertension in isolated sixth nerve palsy: a population-based study.
    Patel SV; Holmes JM; Hodge DO; Burke JP
    Ophthalmology; 2005 May; 112(5):760-3. PubMed ID: 15878054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of diverse electronic medical record systems to identify genetic risk for type 2 diabetes within a genome-wide association study.
    Kho AN; Hayes MG; Rasmussen-Torvik L; Pacheco JA; Thompson WK; Armstrong LL; Denny JC; Peissig PL; Miller AW; Wei WQ; Bielinski SJ; Chute CG; Leibson CL; Jarvik GP; Crosslin DR; Carlson CS; Newton KM; Wolf WA; Chisholm RL; Lowe WL
    J Am Med Inform Assoc; 2012; 19(2):212-8. PubMed ID: 22101970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic health record phenotyping improves detection and screening of type 2 diabetes in the general United States population: A cross-sectional, unselected, retrospective study.
    Anderson AE; Kerr WT; Thames A; Li T; Xiao J; Cohen MS
    J Biomed Inform; 2016 Apr; 60():162-8. PubMed ID: 26707455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rule-based electronic phenotyping algorithm for detecting clinically relevant cardiovascular disease cases.
    Esteban S; Rodríguez Tablado M; Ricci RI; Terrasa S; Kopitowski K
    BMC Res Notes; 2017 Jul; 10(1):281. PubMed ID: 28705240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic health record use to classify patients with newly diagnosed versus preexisting type 2 diabetes: infrastructure for comparative effectiveness research and population health management.
    Kudyakov R; Bowen J; Ewen E; West SL; Daoud Y; Fleming N; Masica A
    Popul Health Manag; 2012 Feb; 15(1):3-11. PubMed ID: 21877923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Diverse Data Sources on Computational Phenotyping.
    Wang L; Olson JE; Bielinski SJ; St Sauver JL; Fu S; He H; Cicek MS; Hathcock MA; Cerhan JR; Liu H
    Front Genet; 2020; 11():556. PubMed ID: 32582289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning for the Prediction of New-Onset Diabetes Mellitus during 5-Year Follow-up in Non-Diabetic Patients with Cardiovascular Risks.
    Choi BG; Rha SW; Kim SW; Kang JH; Park JY; Noh YK
    Yonsei Med J; 2019 Feb; 60(2):191-199. PubMed ID: 30666841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Systematic Review of Case-Identification Algorithms Based on Italian Healthcare Administrative Databases for Two Relevant Diseases of the Endocrine System: Diabetes Mellitus and Thyroid Disorders.
    Dalla Zuanna T; Pitter G; Canova C; Simonato L; Gnavi R
    Epidemiol Prev; 2019; 43(4 Suppl 2):17-36. PubMed ID: 31650804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Medical claims-based case-control study of temporal relationship between clinical visits for hand syndromes and subsequent diabetes diagnosis: implications for identifying patients with undiagnosed type 2 diabetes mellitus.
    Hou WH; Li CY; Chen LH; Wang LY; Kuo LC; Kuo KN; Shen HN; Chiu CT
    BMJ Open; 2016 Oct; 6(10):e012071. PubMed ID: 27798003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An algorithm to improve diagnostic accuracy in diabetes in computerised problem orientated medical records (POMR) compared with an established algorithm developed in episode orientated records (EOMR).
    de Lusignan S; Liaw ST; Dedman D; Khunti K; Sadek K; Jones S
    J Innov Health Inform; 2015 Jun; 22(2):255-64. PubMed ID: 26245239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of a type 1 diabetes algorithm using electronic medical records and administrative healthcare data to study the population incidence and prevalence of type 1 diabetes in Ontario, Canada.
    Weisman A; Tu K; Young J; Kumar M; Austin PC; Jaakkimainen L; Lipscombe L; Aronson R; Booth GL
    BMJ Open Diabetes Res Care; 2020 Jun; 8(1):. PubMed ID: 32565422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diabetes case identification methods applied to electronic medical record systems: their use in HIV-infected patients.
    Crane HM; Kadane JB; Crane PK; Kitahata MM
    Curr HIV Res; 2006 Jan; 4(1):97-106. PubMed ID: 16454715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and Validation of Various Phenotyping Algorithms for Diabetes Mellitus Using Data from Electronic Health Records.
    Esteban S; Rodríguez Tablado M; Peper F; Mahumud YS; Ricci RI; Kopitowski K; Terrasa S
    Stud Health Technol Inform; 2017; 245():366-369. PubMed ID: 29295117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of a K-nearest neighbors model to predict the development of type 2 diabetes within 2 years in an obese, hypertensive population.
    Garcia-Carretero R; Vigil-Medina L; Mora-Jimenez I; Soguero-Ruiz C; Barquero-Perez O; Ramos-Lopez J
    Med Biol Eng Comput; 2020 May; 58(5):991-1002. PubMed ID: 32100174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incidence and Prevalence of Microvascular and Macrovascular Diseases and All-cause Mortality in Type 2 Diabetes Mellitus: A 10-year Study in a US Commercially Insured and Medicare Advantage Population.
    Visaria J; Iyer NN; Raval A; Kong S; Hobbs T; Bouchard J; Kern DM; Willey V
    Clin Ther; 2019 Aug; 41(8):1522-1536.e1. PubMed ID: 31196656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.