These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 22763131)

  • 1. Structural analysis of a core model for carbohydrate uptake in Escherichia coli.
    Kremling A; Flockerzi D
    J Theor Biol; 2012 Jun; 303():62-74. PubMed ID: 22763131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A feed-forward loop guarantees robust behavior in Escherichia coli carbohydrate uptake.
    Kremling A; Bettenbrock K; Gilles ED
    Bioinformatics; 2008 Mar; 24(5):704-10. PubMed ID: 18187443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy.
    Noor E; Eden E; Milo R; Alon U
    Mol Cell; 2010 Sep; 39(5):809-20. PubMed ID: 20832731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time hierarchies in the Escherichia coli carbohydrate uptake and metabolism.
    Kremling A; Fischer S; Sauter T; Bettenbrock K; Gilles ED
    Biosystems; 2004 Jan; 73(1):57-71. PubMed ID: 14729282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting hierarchical modularity in biological networks.
    Ravasz E
    Methods Mol Biol; 2009; 541():145-60. PubMed ID: 19381526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations.
    Costa RS; Machado D; Rocha I; Ferreira EC
    Biosystems; 2010 May; 100(2):150-7. PubMed ID: 20226228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical perspective on the consequences of the limited availability of kinetic data in metabolic dynamic modelling.
    Costa RS; Machado D; Rocha I; Ferreira EC
    IET Syst Biol; 2011 May; 5(3):157-63. PubMed ID: 21639589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimal reaction sets for Escherichia coli metabolism under different growth requirements and uptake environments.
    Burgard AP; Vaidyaraman S; Maranas CD
    Biotechnol Prog; 2001; 17(5):791-7. PubMed ID: 11587566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural sources of robustness in biochemical reaction networks.
    Shinar G; Feinberg M
    Science; 2010 Mar; 327(5971):1389-91. PubMed ID: 20223989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural analysis of metabolic networks based on flux centrality.
    Koschützki D; Junker BH; Schwender J; Schreiber F
    J Theor Biol; 2010 Aug; 265(3):261-9. PubMed ID: 20471988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and experimental validation of the signal transduction via the Escherichia coli sucrose phospho transferase system.
    Sauter T; Gilles ED
    J Biotechnol; 2004 May; 110(2):181-99. PubMed ID: 15121337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the differences in metabolic network expansion between prokaryotes and eukaryotes.
    Tanaka M; Yamada T; Itoh M; Okuda S; Goto S; Kanehisa M
    Genome Inform; 2006; 17(1):230-9. PubMed ID: 17503372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncovering the hidden geometry behind metabolic networks.
    Serrano MÁ; Boguñá M; Sagués F
    Mol Biosyst; 2012 Mar; 8(3):843-50. PubMed ID: 22228307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing Escherichia coli DH5alpha growth and metabolism in a complex medium using genome-scale flux analysis.
    Selvarasu S; Ow DS; Lee SY; Lee MM; Oh SK; Karimi IA; Lee DY
    Biotechnol Bioeng; 2009 Feb; 102(3):923-34. PubMed ID: 18853410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An extended bioreaction database that significantly improves reconstruction and analysis of genome-scale metabolic networks.
    Stelzer M; Sun J; Kamphans T; Fekete SP; Zeng AP
    Integr Biol (Camb); 2011 Nov; 3(11):1071-86. PubMed ID: 21952610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural robustness of metabolic networks with respect to multiple knockouts.
    Behre J; Wilhelm T; von Kamp A; Ruppin E; Schuster S
    J Theor Biol; 2008 Jun; 252(3):433-41. PubMed ID: 18023456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observing local and global properties of metabolic pathways: 'load points' and 'choke points' in the metabolic networks.
    Rahman SA; Schomburg D
    Bioinformatics; 2006 Jul; 22(14):1767-74. PubMed ID: 16682421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring minimal feasible metabolic networks of Escherichia coli.
    Jiang D; Zhou S; Liu H; Chen YP
    Appl Biochem Biotechnol; 2010 Jan; 160(1):222-31. PubMed ID: 19472083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The small world in biophysical systems structural properties of glycolysis and the TCA cycle in Escherichia coli.
    Krajnc B; Marhl M
    Cell Mol Biol Lett; 2002; 7(1):129-31. PubMed ID: 11944065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.