BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 22763135)

  • 1. Modeling fusion of cellular aggregates in biofabrication using phase field theories.
    Yang X; Mironov V; Wang Q
    J Theor Biol; 2012 Jun; 303():110-8. PubMed ID: 22763135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-silico analysis on biofabricating vascular networks using kinetic Monte Carlo simulations.
    Sun Y; Yang X; Wang Q
    Biofabrication; 2014 Mar; 6(1):015008. PubMed ID: 24429898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A phase field approach for multicellular aggregate fusion in biofabrication.
    Yang X; Sun Y; Wang Q
    J Biomech Eng; 2013 Jul; 135(7):71005. PubMed ID: 23722823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental biology and tissue engineering.
    Marga F; Neagu A; Kosztin I; Forgacs G
    Birth Defects Res C Embryo Today; 2007 Dec; 81(4):320-8. PubMed ID: 18228266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuum-level modelling of cellular adhesion and matrix production in aggregates.
    Geris L; Ashbourn JM; Clarke T
    Comput Methods Biomech Biomed Engin; 2011 May; 14(5):403-10. PubMed ID: 21516526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels.
    Boland T; Mironov V; Gutowska A; Roth EA; Markwald RR
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Jun; 272(2):497-502. PubMed ID: 12740943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional bioprinting of rat embryonic neural cells.
    Lee W; Pinckney J; Lee V; Lee JH; Fischer K; Polio S; Park JK; Yoo SS
    Neuroreport; 2009 May; 20(8):798-803. PubMed ID: 19369905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of the self-assembly of complex cellular aggregates on micromolded nonadhesive hydrogels.
    Napolitano AP; Chai P; Dean DM; Morgan JR
    Tissue Eng; 2007 Aug; 13(8):2087-94. PubMed ID: 17518713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro self-assembly of proepicardial cell aggregates: an embryonic vasculogenic model for vascular tissue engineering.
    Pérez-Pomares JM; Mironov V; Guadix JA; Macías D; Markwald RR; Muñoz-Chápuli R
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Jul; 288(7):700-13. PubMed ID: 16761281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model.
    Chang R; Emami K; Wu H; Sun W
    Biofabrication; 2010 Dec; 2(4):045004. PubMed ID: 21079286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mathematical model of liver cell aggregation in vitro.
    Green JE; Waters SL; Shakesheff KM; Byrne HM
    Bull Math Biol; 2009 May; 71(4):906-30. PubMed ID: 19093155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic Monte Carlo and cellular particle dynamics simulations of multicellular systems.
    Flenner E; Janosi L; Barz B; Neagu A; Forgacs G; Kosztin I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031907. PubMed ID: 22587123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micropocket hydrogel devices for all-in-one formation, assembly, and analysis of aggregate-based tissues.
    Zhao L; Mok S; Moraes C
    Biofabrication; 2019 Aug; 11(4):045013. PubMed ID: 31290409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organ printing: fiction or science.
    Jakab K; Neagu A; Mironov V; Forgacs G
    Biorheology; 2004; 41(3-4):371-5. PubMed ID: 15299269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lattice Boltzmann simulations of the time evolution of living multicellular systems.
    Cristea A; Neagu A; Sofonea V
    Biorheology; 2011; 48(3-4):185-97. PubMed ID: 22156033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoreversible hydrogel for in situ generation and release of HepG2 spheroids.
    Wang D; Cheng D; Guan Y; Zhang Y
    Biomacromolecules; 2011 Mar; 12(3):578-84. PubMed ID: 21247096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of spheroid self-assembly in liquid-overlay culture of DU 145 human prostate cancer cells.
    Enmon RM; O'Connor KC; Lacks DJ; Schwartz DK; Dotson RS
    Biotechnol Bioeng; 2001 Mar; 72(6):579-91. PubMed ID: 11460249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization and comparison of two different 3D culture methods to prepare cell aggregates as a bioink for organ printing.
    Imani R; Hojjati Emami S; Fakhrzadeh H; Baheiraei N; Sharifi AM
    Biocell; 2012 Apr; 36(1):37-45. PubMed ID: 23173303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A three-dimensional bioprinting system for use with a hydrogel-based biomaterial and printing parameter characterization.
    Song SJ; Choi J; Park YD; Lee JJ; Hong SY; Sun K
    Artif Organs; 2010 Nov; 34(11):1044-8. PubMed ID: 21092048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting aggregation kinetics of DU 145 prostate cancer cells in liquid-overlay culture.
    O'Connor KC; Venczel MZ
    Biotechnol Lett; 2005 Nov; 27(21):1663-8. PubMed ID: 16247671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.